Project Introduction:
Table to Farm: A Sustainable, Systems-based Approach for a Safer and Healthier Melon Supply Chain in the U.S.

Project Team- Principal Investigators/Team Leads:
Bhimu S. Patil, Texas A&M University (TAMU)
Sadhana Ravishankar, University of Arizona
Tom Turini, University of California
Fred Nafukho, TAMU
Kevin Crosby, Texas AgriLife Research
Marco Palma, Texas A&M AgriLife Extension

Project Team- Co-Principal Investigators:
Tim Coolong, Dept. of Horticulture, Univ. of Georgia
Wenjing Guan, Purdue University
Jonathan Schultheis, North Carolina State University
Paul Brierley, University of Arizona
Mendel Friedman, USDA-ARS-WRRC, Albany, CA 94710
Monica Ozores-Hampton, University of Florida
Kerry Cooper, University of Arizona
Daniel Leskovar, Texas AgriLife Research, Uvalde
Stanislav Vitha, TAMU
Hisashi Koiva, Professor, Dept. Horticultural Sciences, TAMU
John Jifon, Professor, Texas A&M AgriLife Research, Weslaco
Luis Ribera, Extension Economist, Dept. of Ag. Economics, TAMU
Mark Waller, Professor, Department of Ag Economics, Texas AgriLife Extension
Ronda Miller, Professor, Department of Animal Science, TAMU
Xiaoning Qian, Assistant Professor, Dept. Electric & Computer Engineering, TAMU
G.K. Jayaprakasha, Texas AgriLife Research
Jashbir Singh, Texas AgriLife Research

Texas A&M AgriLife Research Team

University of Arizona Research Team

COLLEGE OF AGRICULTURE & LIFE SCIENCES
Animal & Comparative Biomedical Sciences

USDA NATIONAL CENTER OF EXCELLENCE
Foods for Health

THE UNIVERSITY OF ARIZONA
Yuma Center of Excellence for Desert Agriculture

TEXAS A&M AGRI LIFE RESEARCH
Vegetable & Fruit Improvement Center
Yuma Center of Excellence for Desert Agriculture (YCEDA) Melon Project Team

Project Goal:

The long-term goal of this multidisciplinary project was to enhance the sustainability and profitability of melon production in the U.S., emphasizing consumer preferences and industry driven needs. This stakeholder-driven goal has been achieved by integrating market surveys, breeding, and improved production practices guided by consumer and industry expectations for retail quality, nutrition, and safety. This systems approach ensured co-optimization of cultivar development and agronomic practices to address multiple stakeholders needs. The project goal accomplished five consumer-driven objectives.

Objectives:

Objective 1. To identify and analyze factors influencing consumer behaviors related to melon purchase and consumption.

Objective 2. To develop cultivars germplasm that address producer and consumer needs identified in Objective 1, using genomics-assisted selection and breeding to harness genetic diversity of melon varieties and improve nutritional quality, flavor, safety, and stress resistance.

Objective 3. To develop region- and cultivar-specific agronomic practices and technologies to improve production efficiency and retail/nutritional quality and safety.

Objective 4. To identify critical control points and develop pre-harvest (breeding and production) and post-harvest strategies to minimize microbial contamination.

Objective 5. To establish a Center of Excellence in Research, Extension, and Outreach for Melons with a focus on integrating all the objectives to improve consumer awareness and meeting the consumer demand for safe, high-quality melons that exceed minimum quality standards and thereby result in increased profits for producers and retailers.

Acknowledgments:

This study was supported by the USDA-NIFA-SCRI-2017-51181-26834 through the National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University.