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Chapter 1. Introduction  

 

This report presents a field-scale solid set sprinkler system hydraulic model. The model 

has functionalities for hydraulic characterization, simulation, and design of sprinkler 

systems. In addition, the model can compute test-plot scale and field-scale irrigation 

uniformity estimates based on data sets collected through standard field uniformity tests.  

 Two types of field-scale solid set sprinkler system layout configurations, 

commonly used in the Yuma Valley Irrigation Districts, can be simulated with the 

hydraulic model presented here. The typical system layout in the Yuma Valley consists of 

a mainline running across the head end of the field supplying irrigation water to a line of 

laterals installed on one side of the main. Such systems are described here as having a  

single-line laterals field layout configuration (Figure 1a). Another widely used field 

layout configuration consists of a mainline installed in between two adjacent irrigated 

fields, or somewhere within an irrigated field, and supplies irrigation water to two sets of 

laterals, each installed on either side of the main (Figure 1b). Such a system is described 

here as one having double-line laterals layout configuration. With this layout each set of 

laterals irrigate either some fraction of the field or each of the adjacent fields.  

 The water source for a field-sprinkler system could be surface or subsurface. 

However, in the Yuma Valley Irrigation Districts, typically, lined field supply canals are 

the source of irrigation water, with pumps (often centrifugal pumps) providing the energy 

input. Laterals can be installed at any desired angle to the mainline and the lengths of the 

laterals can be the same or can be varied following the geometry of the irrigated field. 

Slopes, diameters, and hydraulic roughness characteristics can vary along a lateral, 

between laterals, and along the mainline. In addition, sprinkler characteristics can vary 

along a lateral or between laterals and the model can compute energy losses due to 

various types of pipe appurtenances along laterals and the mainline. 

 The model can be run in four computational modes: sprinkler system hydraulic 

characterization, design, simulation, and field evaluation. Given the hydraulic, geometric, 

and topographic characteristics of a sprinkler system, the system characterization mode  
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Figure 1 Field-scale solid set sprinkler system layout configurations (a) single-line laterals (b) double-line laterals (SL = sprinkler  

   spacing along laterals and Sm = lateral spacing) 
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provides the functionality for computing the system hydraulic characteristic curves at 

preset computational nodes in the system. Outputs of the hydraulic characterization 

computation are useful in pump selection or evaluation. However, the main significance 

of the system characterization computations is in defining the hydraulic characteristics of 

the mainline outlets, which is essential for executing subsequent hydraulic design and 

simulation computations.  

 

The hydraulic design mode computation typically produces a feasible yet suboptimal 

field-scale sprinkler system design that meets a specified requirement on the minimum 

acceptable sprinkler pressure head. However, repeated simulations and sensitivity 

analysis with alternative scenarios (considering different combinations of sprinkler 

layouts, pipe diameters, sprinkler characteristics, and pipe appurtenances) can be used to 

develop acceptable designs.  

 

With the simulation mode, the model generates the spatial distribution of field-scale 

sprinkler discharges and pressure heads given the total dynamic head at the sprinkler 

system inlet. Because the spatial distribution of sprinkler pressure heads and discharges 

are good indicators of field-scale irrigation uniformity, the hydraulic simulation 

functionality of the model described here can be considered as a useful tool in evaluating 

the potential irrigation uniformity of an existing system.  

 

The field evaluation functionality of the model can be used to estimate irrigation 

uniformity (in terms of Christiansen’s uniformity index and the low-quarter distribution 

uniformity) at the scale of a uniformity evaluation-plot or an irrigated field.    

 

The system characterization, design, and simulation computations are all based on the 

basic principles of manifold hydraulics (Larock et al., 2000; Miller, 2009), which couples 

the energy equation for each pipe segment along with the continuity equation at a node 

and solves the resulting expression iteratively. The basic numerical algorithms used here 

for modeling the hydraulics of a field-scale solid set sprinkler system with single-line 

laterals layout configuration were developed as part of an earlier study (Zerihun and 



 8 

Sanchez, 2011). Further development and enhancement of the hydraulic model has been 

performed within the framework of the study reported here: (1) The formulation and 

numerical solution of the hydraulic equations for a sprinkler system with double-line 

laterals layout configuration; (2) An interpolation scheme, based on cubic splines, was 

developed and incorporated into the current version of the model as an interface for 

coupling the numerical solutions of the lateral and mainline hydraulic equations;  

(3) A one-dimensional optimization algorithm is developed and incorporated into the 

hydraulic simulation and design functionalities of the model; (4) Enhancements were 

made to earlier version of the model in order to accommodate field layouts with irregular 

boundaries (variable lateral lengths); and (5) A new functionality for computing test-plot 

scale and field-scale sprinkler irrigation uniformity from field data is developed.  

 

Model evaluation is conducted by comparing the output of the model with field measured 

hydraulic (discharge and pressure head) data. Results of model evaluation and  

application of the model in field evaluation, system hydraulic characterization, 

simulation, and design is presented in a companion document (Zerihun and Sanchez, 

2012). In addition, component of the model designed for hydraulic analysis of single-line 

laterals layout configuration was evaluated through comparison with field data as part of 

a previous study cited above.  

 

This report is organized into five chapters. Chapter 1 is the introduction section of the 

report. Chapter 2 presents a formulation of the basic hydraulic equations governing flow 

in a field-scale solid set sprinkler system and their numerical solutions. Chapter 3 

describes the computational capabilities of the model (hydraulic characterization, design, 

simulation, and field evaluation). It also presents the formulation and numerical solution, 

of the sprinkler system hydraulic design and simulation problems, as a one-dimensional 

optimization problem. Chapter 4 discusses the program components, model functionality, 

input/output data files and directory structure, and procedures for the installation and 

running of the program. In Chapter 5 limitations of the current version of model is 

discussed.  
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Chapter 2. Hydraulic model  

 

2.1 Introduction  

The hydraulics of a field-scale agricultural sprinkler system is a physical 

description of water flow through an open pipeline network, consisting of a main and 

laterals (Figure 1). A sprinkler lateral or main is a special type of manifold, a pipe 

consisting of multiple outlets with constant or variable spacing, hydraulic characteristics, 

and discharge. Typically, for solid set sprinkler systems spacing between outlets along a 

lateral or a mainline are constant and discharges are variable. Considering the entire 

length of a lateral or a mainline, flow velocity is spatially variable, however, in between 

outlets (assuming a constant pipe size) flow is uniform. At the scale of an irrigated field 

transient flow occurs over short durations following valve opening or closure (e.g., when 

a pump is turned on or off). Hence, during normal operations flow in such systems can be 

hydraulically described as steady without loss of generality. This implies that simpler 

forms of the energy conservation and mass continuity equations (applicable to steady 

incompressible flow) can be used to describe the hydraulics of such systems (Granger, 

1995; Larock et al., 2000; Miller, 2009). A brief review of the basic hydraulic 

principles/concepts and associated equations for computing friction and local head losses 

and the distribution of the components of the specific energy along the length of a flow-

through pipe (a pipe without outlets) is presented in a companion document (Zerihun and 

Sanchez, 2012). In this chapter, these concepts are used to formulate the governing 

equations of flow in a field-scale solid set sprinkler system. In addition, the chapter 

develops numerical solutions to the hydraulic equations.     

 

2.2 Sprinkler lateral hydraulics: assumptions, equations, and numerical solution 

 

Assumptions  

The following set of assumptions apply to the equations presented subsequently: 

(1) Flow is steady, (2) A lateral is comprised of multiple pipe sections and nodes; (3) For 

computational purposes a lateral pipe section is considered to be composed of a segment 

spanning two consecutive nodes with constant diameter, slope, and hydraulic resistance 
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coefficient; (4) A computational node along a lateral could be an off-take node 

(consisting of a sprinkler riser pipe) or a none off-take node consisting of a pipe fitting or 

appurtenance or simply a change in pipe diameter that induces a drop in energy but no 

change in the through-flow discharge; (5) It then follows from assumptions 2 to 4 above 

that flow in a pipe section is uniform; (6) Sprinkler riser pipes are vertical, and  

(7) Leakage losses in pipe fittings and elsewhere in the field-sprinkler system is 

negligible. 

 

Equations and numerical solution for the distal segment of the lateral  

 Figure 2 depicts the jth segment of a lateral obtaining its supply from the kth 

mainline off-take node. Following convention in manifold hydraulics, the computational 

nodes along the lateral (and sprinklers) are numbered sequentially starting from the distal 

node (where j = 1 and Qj-1
k = 0) and moving upstream in ascending order.  
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Figure 2 Schematics of the jth segment of the lateral obtaining its supply from the kth  

      off-take node of the mainline  

 

 

where CL = centre line of pipe, Q = lateral discharge (L/s); V = average cross-sectional 

velocity (m/s); H = total head at a computational node (m); h = pressure head (m), z = 

nodal elevation, referenced from a datum (m); D =  pipe diameter (mm); qs = sprinkler 

discharge (L/s); the subscripts l, r,  and s define hydraulic, geometric, and topographic 

variables associated with lateral, riser pipe, or sprinkler nozzle, respectively; the 

subscripts u and d define flow conditions at the downstream and upstream ends of a 
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lateral section, respectively; and Lj
k = distance between the jth and (j+1)th  computational 

nodes of the lateral obtaining its supply from the kth off-take node of the mainline (when 

both of these computational nodes consist of sprinklers, then Lj
k = SL). Noting that flow 

in a lateral segment is uniform (sections 2.2), it then follows that cross-sectional velocity, 

V, and discharge, Q, are constant over a lateral segment; hence in Figure 2 they are not 

appended with the superscripts u and d.  

 

Numerical computation along a lateral begins at the distal end sprinkler of the lateral and 

proceeds upstream. Referring to Figure 2, application of the energy conservation 

principle between a point just upstream of the inlet to the distal sprinkler riser pipe 

(where j=1) and the distal sprinkler nozzle is given as 
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In Eq. 1, g = acceleration due to gravity (9.81m/s2), hfr = friction head loss in the sprinkler 

riser pipe (m), and kL = the local head loss coefficient at the inlet to the distal sprinkler 

riser pipe (-). Note that the energy equation, Eq. 1, assumes that at a short distance within 

the sprinkler riser pipe, following the contraction at the entrance to the pipe, the flow 

becomes fully developed. 

 

Friction head loss in a pipe segment can be computed with the Darcy-Weisbach equation  
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Or with the Hazen-Williams equation 
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In Eqs. 2 and 3, kdw = a dimensional constant equal to 107.917 mm5(s/L)2, khw = a 

dimensional constant equivalent to 1.22 1010mm4.87(s/L)1.852, f = Darcy-Weisbach 

friction factor, and C = Hazen-Williams friction coefficient, L = pipe section length 

(when applied to the sprinkler riser pipe, L = hr, Q = qs, and D = Dr).   
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Noting that the velocity head at the sprinkler nozzle, Vs1
k, can be given as 

 

 
 

where hn is energy loss in the nozzle and is assumed here negligible. Eq. 1 can be 

expressed as:  
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Using the Darcy-Weisbach equation to compute friction head loss in the sprinkle riser 

pipe, Eq. 5 can be given as:  
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In Eqs. 7, kvh = a dimensional constant of the velocity head term, equivalent to 104.917  

(mm)4m(s/L)2. Note that a similar equation can be derived if Eq. 3 is used to compute 

friction head loss. In Eq. 7, there are three unknowns (Ed)1
k, hs1

k, and qs1
k. However, hs1

k 

and qs1
k
 are related by the pressure head-discharge relationship of the sprinkler, a data 

provided by the sprinkler manufacturer: 
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In Eq. 8, 1 (L/s/m2) and 2 (-) = empirical curve fitting parameters. Although the 

velocity head at the sprinkler nozzle is closely approximated by the sum of the velocity 

head and pressure head in the riser pipe just upstream of the nozzle (Eq. 4), it is a 

common practice to assume the velocity head upstream of the nozzle as negligible 

compared to the pressure head there and use a simpler approximation given by Eq. 8 to 

relate nozzle discharge directly to the pressure head. As will be described in subsequent 
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sections, the pressure head at the distal sprinkler of the lateral obtaining its supply from 

the kth mainline outlet, hs1
k, is known (sections 3.1-3.3). Given hs1

k, the following 

procedure can be used to solve Eqs. 7 and 8 for the unknowns, (Ed)1
k and qs1

k: 

1. Specify the desired sprinkler pressure head, hs1
k; 

2. Substitute hs1
k
 in Eq. 8 and compute the corresponding qs1

k;  

3. Substitute hs1
k and qs1

k values (steps 1 and 2, above) into Eq. 7 and calculate (Ed)1
k; 

4. Calculate V1
k as a function of Q1

k and (Dl1)
k  with Eq. 9 and (hd)1

k
 with Eq. 6. 
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In Eq. 9, kv = a dimensional constant in the equation for computing average cross-

sectional velocity, equal to 103.105(mm)2m/L. Note that when Eq. 2 is used to compute 

friction head loss, a procedure for computing the friction factor, f, as a function of e/D 

and Re (Zerihun and Sanchez, 2012) is imbedded within the above algorithm (which is 

iterative for conditions in which 4000<Re). Although the friction factor varies from 

lateral to lateral and along a lateral, for notational simplicity f is used to represent the 

friction factor for the entire sprinkler system.    

 

The pressure head at a point just downstream of the second node, (hu)1
k (Figure 2), can 

then be computed with the energy equation written for the distal segment of the lateral 

obtaining its supply from the kth mainline outlet  (i.e., the lateral segment between the 1st 

and 2nd computational nodes): 
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In Eq. 10, z1
k = (z 

d)1
k-(z 

u)1
k; (i.e., the elevation difference over the distal lateral 

segment). 

 

Equations and numerical solution for all segments upstream of the distal segment of a 

lateral  



 14 

 For all lateral segments upstream of the distal segment computation proceeds as 

follows: if the computational node at the upstream end of the jth lateral segment (node 

j+1) is not a sprinkler riser pipe, then the incoming discharge to the computational node, 

Qj+1
k, is the same as the through-flow discharge, Qj

k, computed in the preceding step. 

Hence, the local head loss and associated changes in velocity and pressure head, if any, 

across the (j+1)th node can be computed directly. However, if the (j+1)th node consists 

of a sprinkler riser pipe, then both the incoming discharge to the computational node, 

Qj+1
k, and the (j+1)th sprinkler discharge are unknowns. Two equations derived based on 

the application of the energy conservation principle across the (j+1)th node (along the 

lateral for the through-flow and along the sprinkler riser pipe), coupled with the sprinkler 

head-discharge function and the continuity equation (Eq. 2) applied to node j+1, can be 

used to compute the (j+1)th sprinkler discharge, qsj+1
k, and pressure head, hsj+1

k.  

Accordingly, the energy equation for the through flow across the (j+1)th node of the 

lateral is 
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where kL = is the local head loss coefficient for the through-flow at the (j+1)th node.  

From continuity at a node we have Qj+1
k = Qj

k+qsj+1
k, hence Eq. 11 is a function of two 

unknowns: (Ed)j+1
k and qsj+1

k. Noting that the sprinkler discharge, qsj+1
k, is related to the 

pressure head, hsj+1
k with:  
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then qsj+1
k and (Ed)j+1

k can be computed iteratively with Eqs. 11 and 12. However, the 

values of qsj+1
k and (Ed)j+1

k computed as such needs to satisfy the energy equation written 

between node j+1 and the (j+1)th sprinkler nozzle, Figure 2, given as   
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It then follows that Eqs. 11-13 can be solved iteratively for qsj+1
k, hsj+1

k, and (Ed)j+1
k as 

follows: 
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1. Initialize qsj+1
k: set the iteration index i = 1 and let the initial value of qsj+1

k
 be (qsj+1

k)i, 

a good choice is setting (qsj+1
k)i = qsj

k; 

2. Noting that Qj+1
k = Qj

k+qsj+1
k, substitute (qsj+1

k)i  for qsj+1
k and compute (Ed)j+1

k with 

Eq. 11;  

3. Substitute estimates of qsj+1
k and (Ed)j+1

k  (steps 1 and 2 above) into Eq. 13 and 

compute an estimate of hsj+1
k; 

4. Substitute estimate of hsj+1
k from step 3 above into Eq. 12 and calculate a revised 

estimate of qsj+1
k, (qsj+1

k)i +1; 

5. Compute relative error, q, given as  
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6.  If q  10-5, then the numerical solution has converged and the solution is (qsj+1
k)i +1,  

     computed in step 4 above. On the other hand, if 10-5<q, then set i  =  i+1 and                   

      proceed through steps 2 to 6. 

 

The distribution of sprinkler discharge and pressure head as well as the components of 

total head along a lateral is determined through repeated application of the algorithm 

presented above to each section of the lateral, sequentially starting from the  

distal end and proceeding upstream to the inlet end. However, for field-wide simulation 

or design applications, individual laterals cannot be considered in isolation. In stead, 

these algorithm need to be coupled with those developed for the mainline.    

 

2.3 Sprinkler mainline hydraulics: introduction and assumptions 

 As described above, the sprinkler mainline can be considered as a hydraulic 

manifold consisting of multiple outlets spanning its length (Figure 1). The set of 

assumptions introduced in the description of lateral hydraulics also apply to mainline 

hydraulics, presented subsequently. The exception being that instead of sprinkler riser 

pipes that need to be set vertical (which is the case with laterals), here there are mainline 

outlet sections with the same longitudinal slopes as the corresponding laterals (Figures 3 

and 4). A mainline off-take node can have one or two outlets, each supplying irrigation 
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water to a lateral with known hydraulic characteristics: discharge and total head, Q(H), 

function. When a field-scale sprinkler system has a mainline supplying water to a line of 

laterals installed on one side of the main only, it is described here as a system with single-

line laterals layout configuration. If, on the other hand, a sprinkler main has two sets of 

laterals installed on either side of the main, then it is referred to as a system with double-

line laterals layout configuration.  

 

As will be discussed in some detail later, the hydraulic characteristic of each lateral is 

defined, at a preselected computational node close to its inlet, during the system 

hydraulic characterization computations (section 3.1). The point at which the hydraulic 

characteristics of a lateral is defined (hence forth referred to as node of lateral hydraulic 

characterization, or node ℓ) is set at a distance of ℓ = SL/2 from the lateral inlet (Figures 3 

and 4), where SL is the spacing between sprinklers along the lateral. Although node ℓ 

along a lateral does not represent a physical outlet, for computational purposes it is 

treated as a mainline outlet and is referred to as such in subsequent discussion. 

Considering a sprinkler system with a sing-line laterals layout configuration for instance, 

it can be noted that for a lateral obtaining its supply from the kth off-take node of the 

mainline, the discharge at node ℓ of the lateral, Qℓ
k, is equal to the discharge at the lateral 

inlet, Qk, but the total head at node ℓ, Hℓ
k, would be less than that at the lateral inlet, Hk.  

Because the total head at the inlet to a lateral, Hk, can be determined only as part of the 

hydraulic computation along the mainline and not as part of the lateral hydraulic 

characterization phase, the lateral inlet itself cannot be used as the point of lateral 

hydraulic characterization.  

 

Although the basic principles of manifold hydraulics as applied to a mainline with a 

single-line or double-line laterals layout configuration remain the same, the number of 

equations and the numerical solution techniques used are different. Hence, the 

formulation of the mainline hydraulic problem and associated numerical solution for 

sprinkler systems with single-line and double-line laterals are described in separate 

sections.   
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2.3.1 Sprinkler mainline hydraulics for single-line laterals layout configuration:  

         equations and numerical solutions 

 The schematics of the distal segment of a sprinkler mainline that supplies 

irrigation water to a single-line of laterals is shown in Figure 3.  
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Figure 3 Schematics of the kth segment of sprinkler mainline with a single-line of laterals   

   (Definition of the variables Q, V, H, h, and z is the same as in Figure 2, ℓ =  

           lateral hydraulic characterization node, a point along a lateral at which the  

           hydraulic characteristics of the lateral is defined; the subscripts ℓ and m define  

           flow conditions and variables at the hydraulic characterization node of a lateral,  

           respectively. When both the kth and (k+1)th computational nodes are off-take  

           nodes, hence Lk is equal to lateral spacing, Sm) 

 

Equations and numerical solution for the distal segment of the mainline 

 Computation starts at the distal end of the main (where k=1 and Qk-1 = 0) and 

proceeds upstream. When the Darcy-Weisbach equation is used to compute friction head 

loss, the energy equation between a point just upstream of the distal computational node 

along the mainline (k=1) and the hydraulic characterization node, ℓ, of the distal lateral 

(which also represents the distal mainline outlet) is given as: 
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and kL = local head loss coefficient at the inlet to the distal lateral (-). In addition, the 

lateral discharge at node ℓ (Figure 3), Qℓ
1, is related to, Hℓ

1, as follows 

)()H(fQ 1711

 =  

 

Equation 17 represents the hydraulic characteristic curve (a table of values of Qℓ
1-Hℓ

1) for 

the distal mainline outlet and is generated as part of the hydraulic characterization 

computation (section 3.1). During mainline hydraulic computations the outlet discharge is 

interpolated from the lateral hydraulic characteristic table (Qℓ
k-Hℓ

k, for the lateral 

obtaining its supply from the kth mainline off-take node) as a function of Hℓ
k. For a 

mainline with single-line of laterals linear interpolation can provide satisfactory accuracy, 

if used along with a lateral hydraulic characteristics table with sufficiently fine 

subinterval size. However, as will be discussed subsequently such an approach cannot be 

used for a mainline with double-line of laterals, because the iterative solution requires 

evaluation of both the Q(Hℓ
k) function and its derivative. The cubic spline interpolation 

scheme can interpolate the function value, Q(Hℓk) from the lateral hydraulic 

characteristics table, and also provide approximations of the derivatives, Q (Hℓ
k),  hence  

it is applied in the model described here. A description of the cubic spline interpolation 

scheme as applied to the problem of interpolating mainline outlet discharges from the 

respective lateral hydraulic characteristic tables is presented in section 2.4.   

 Following the same procedure as that described for laterals; the discharge at the 

distal mainline outlet (or the inlet discharge for the lateral obtaining its supply from the 

distal off-take node) Qℓ
1, can be computed as follows: 

1. Specify Hℓ
1. As will be discussed subsequently (section 3.1-3.3) for both the system 

design and simulation options, the total head at the distal mainline outlet, Hℓ
1, is 

known from prior computations.           

2.  Compute Qℓ
1, through interpolation, as a function of the corresponding Hℓ

1  (Eq. 17).  

3 Substitute Hℓ
1 and Qℓ

1 values obtained in steps 1 and 2 above into Eq. 15 and compute 

(Ed)1; 

4 Calculate V1 as a function of Q1 and D1l and then (hd)1 with Eq. 16; 
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The energy equation written for the distal mainline segment (i.e., between the 1st and the 

2nd computational nodes of the sprinkler main) can be solved for the unknown pressure 

head at a point just downstream of the 2nd node, (hu)1 (Figure 3): 

( ) ( ) )(L
D

Q
fkhzh

m

dw

du 1815

1

2

1
111 ++=  

In Eq. 18, z1 = (zd)1-(z
u)1 (i.e., elevation difference across the distal mainline segment).  

 

Equations and numerical solution for all segments upstream of the distal segment of a 

mainline  

 For all computational nodes upstream of the distal segment the numerical 

computation proceeds as follows: If the computational node at the upstream end of the 

kth mainline segment (node k+1) is not a lateral inlet, then the incoming discharge to the 

computational node, Qk+1, is the same as the through flow discharge, Qk, computed in the 

preceding step. Hence, the local head loss and associated changes in velocity and 

pressure head, if any, across the (k+1)th node can be computed directly. However, if the 

(k+1)th node consists of a lateral inlet, then both the incoming flow to the computational 

node, Qk+1, and the (k+1)th lateral inlet discharge, Qℓ 
k+1, are unknowns. Two equations 

derived through the application of the energy equation across the (k+1)th node (along the 

mainline and along the inlet segment of the lateral), coupled with the lateral hydraulic 

characteristics function, Q(Hℓ
k+1), and the continuity equation applied to the (k+1)th node 

can solved iteratively for the unknowns.   

 Accordingly, the energy equation for the through-flow across the (j+1)th node of 

the main is 
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In Eq. 19, kL = the local loss coefficient at the (k+1)th node associated with the through 

flow (-). From continuity at a node we have Qk+1 = Qk+Qℓ 
k+1, hence in Eq. 19 there are 

two unknowns: (Ed)k+1 and Qℓ
k+1. Noting that the lateral discharge at node ℓ (Figure 3), 

Qℓ
k+1, is related to, Hℓ

k+1, with  

 

)()H(fQ kk 2011 ++ =   
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then Eqs. 19 and 20 can be solved iteratively for the unknowns: Hℓ 
k+1and (Ed)k+1. 

However, the values of (Ed)k+1 and Hℓ 
k+1computed as such need to satisfy the energy 

equation between a point just upstream of the (k+1)th node and the system 

characterization node along the (k+1)th  lateral.   
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Although the model can simulate a sprinkler system in which the distance between the 

mainline off-take node and the corresponding outlet, ℓ, is variable from lateral to lateral; 

for reasons of notational simplicity, in Eq. 15, the notation ℓ is used for the entire system. 

Note that in Eq. 21, the friction factor as well is variable. 

It then follows that Eqs. 19-21 can be solved iteratively for Qℓ
k+1, Hℓ

k+1, and (Ed)k+1
 as 

follows: 

1. Initialize Qℓ 
k+1, set the iteration index i = 1 and let the initial estimate of Qℓ 

k+1 be  

      (Qℓ 
k+1)i. A good choice for (Qℓ 

k+1)i is Qℓ
k. 

2. Noting that Qk+1 = Qk+Qℓ 
k+1, substitute (Qℓ 

k+1)i for Qℓ 
k+1 in Eq. 19 and compute 

(Ed)k+1. 

3. Substitute estimates of Qℓ 
k+1 and (Ed)k+1 obtained in steps 1 and 2 above into Eq. 21 

and calculate Hℓ 
k+1. 

4. Substitute estimates of Hℓ 
k+1

 into Eq. 20 and calculate a revised estimate of Qℓ 
k+1

,  

      (Qℓ 
k+1)i+1; 

5. Compute relative error, Q, with 
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6. If Qℓ  10-5, then the numerical solution has converged and the solution is  

      (Qℓ 
k+1)i+1. On the other hand, if 10-5 < Qℓ, then set i = i+1 and proceed through      

      steps 2-6. 

 

Repeated applications of the numerical algorithms described above at each of the 

mainline computational nodes are used to determine, the distribution of total head and its 



 21 

components and lateral inlet discharges along the mainline, for a sprinkler system with 

single-line laterals layout configuration. Description of the procedures used to couple the 

numerical solutions of the lateral and mainline hydraulic equations is presented in 

sections 2.4 and 3.1. As indicated above, for systems with double-line laterals layout 

configuration the number of equations and applicable numerical solutions are different 

and will be developed in subsequent sections. 

 

2.3.2 Sprinkler mainline hydraulics for double-line laterals layout configuration:  

         equations and numerical solution 

 A schematics of a typical segment (the kth pipe section) of a sprinkler main with 

double-line laterals is depicted in Figure 4. Variables with the subscript k represent flow 

conditions and geometric variables at the kth computational node of the main, numbered 

sequentially in ascending order starting from the distal end, where k = 1 and Qk-1 = 0 

(Figure 4). As can be noted from Figure 4, a sprinkler main with a double-line of laterals 

has two sets of outlets, each installed on either side of the mainline. Note that the lateral 

configuration considered here assumes that each mainline off-take node supplies 

irrigation water to a pair of outlets. As described in section 2.3.1, each mainline outlet 

represents a lateral with a known hydraulic characteristic curve: discharge and total head  
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Figure 4 Schematics of the kth segment and the kth and the (k+1)th off-take nodes of a    

   sprinkler mainline for a system with double-line laterals layout configuration   
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(Qℓ -Hℓ) function. The numbering of laterals here is such that each pair obtaining its 

supply from the same mainline off-take node is numbered sequentially starting from the 

distal end (Figure 4). This results in an arrangement in which laterals installed on one 

side of the main are odd-numbered and those installed on the other as even-numbered. 

Hence, as can be noted from Figure 4, variables defining flow conditions at any given 

mainline outlet are superscripted with the nodal index, k (which identifies the 

corresponding mainline off-take node) and the notations I or II,  identifying whether the 

outlet represents an odd-numbered or even-numbered lateral, respectively. 

 

Equations and numerical solution for the distal segment of the mainline 

Numerical computation along the mainline starts at the distal node, in which case 

the mainline off-take node index, k = 1, and the residual outflow Qk-1= 0 (Figure 4). 

Based on the principles of energy conservation two equations can be written between a 

point just upstream of the distal off-take node along the mainline and the corresponding 

outlets. Following the approach described for single-line laterals (section 2.3.1) and using 

the Darcy-Weisbach equation to compute friction head loss (noting that a similar set of 

equations can be derived if the Hazen-Williams equation is used instead), the energy 

equation between a point just upstream of the distal off-take node of the mainline (k = 1) 

and the odd-numbered outlet obtaining its supply from the same node is given as 
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and along the path between the distal off-take node of the mainline and the even-

numbered outlet at the same computational node is given as 
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In Eqs. 23 and 24, kL
I (-) and kL

II (-) = local head loss coefficients for the flow into the 

odd-numbered and the even-numbered outlets, respectively, and f I (-) and f II (-) = the 

friction factor for the odd-numbered and even-numbered mainline outlet pipe sections, 

respectively. Equations 23 and 24 consist of six unknowns: the sum of pressure head and 
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velocity head at a point just upstream of the distal computational node of the mainline, 

(Ed)1; the total head at the mainline outlets obtaining their supply from the distal off-take 

node, Hℓ
1,I and Hℓ

1,II, and the corresponding discharges, Qℓ
1,I and Qℓ

1,II; and the mainline 

discharge in the distal segment, Q1. Applying the principle of continuity at the distal off-

take node results in 

 

)(QQQ II1,I1,

k 25 +=  

 

The functional relationship between the mainline outlet discharge and the corresponding 

total head can be expressed as: 

 

)()H(fQ I1,I1, 26 =  

 

for the odd-numbered outlet and 

 

)()H(fQ II1,II1, 27 =  

 

for the even-numbered outlet. As described in the section 2.3.1 above, Eqs. 26 and 27 

represent a table of values generated during the system hydraulic characterization 

computation (section 3.1). Hence, in the course of a numerical solution of the mainline 

hydraulic equations, outlet discharges (Qℓ
k,

 
I or Qℓ

k,
 
II) are to be interpolated from the 

corresponding outlet hydraulic characteristics curves (Qℓ
k,

 
I-Hℓ

k,I  or Qℓ
k,II-Hℓ

k,II) with the 

cubic-spline interpolation scheme (section 2.4). Substituting Eqs. 25-27 in Eqs. 23 and 24 

results in two equations in three unknowns, which can be combined into a nonlinear 

equation in two unknowns, Hℓ
1,I and Hℓ

1,II: 
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In Eq. 28 
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Note that in Eq. 29, the variables fI and fII represent the Darcy-Weisbach friction factor 

for the odd- and even-numbered mainline outlet pip sections, respectively, and they are a 
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function of pipe absolute roughness, diameter, and Reynolds number, Re. On the other 

hand, if  the Hazen-Williams equation is used, instead, to compute friction head loss the 

friction coefficient is considered constant for a given pipe material. Given the total head 

at one of the mainline outlets, Eq. 28 can be solved iteratively for the other unknown. 

Following the approach presented for a system with single-line laterals layout 

configuration, and considering (for computational purposes) the odd-numbered outlet at 

the distal off-take node (Figure 4) as the distal outlet of the mainline; the total head at the 

distal outlet is given as Hℓ
1,I and can be considered known (section 3.1-3.3). In which 

case, the only unknown in Eq. 28 is Hℓ
1,II. Using the Newton-Raphson method, the 

following recursive formula is used to compute Hℓ
1,II iteratively:  
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In Eq. 30,  ( )iII1,HF   is an approximation of Eq. 28 based on the value of Hℓ
1,I at the ith 

iteration,  iII1,H  : 
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and  ( )iII1,H'F   is the derivative of Eq. 28 evaluated based on the value of Hℓ
1,II at the ith 

iteration,  iII1,H  : 
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In Eq. 34, f II′([Hℓ
1,II]i) = is the derivative of the Darcy-Weisbach friction factor for the  

even-numbered outlet pipe section obtaining   its supply from the distal mainline off-take 

node,  = the kinematic viscosity of water (m2/s), Dℓ
1,II = the diameter of the  

even-numbered outlet pipe section obtaining its supply from the distal mainline off-take 

node (mm), e = pipe absolute roughness (mm), and Re = Reynolds number (-). The 

mainline outlet discharge, Qℓ 
1,I and Qℓ

1,II, is interpolated as a function of the total head, 

Hℓ
1,I and Hℓ

1,II, from the lateral hydraulic characteristics table with a cubic polynomial of 

the form (section 2.4): 
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It then follows 
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In Eqs. 35 and 36, n,1
1,I1, n,2

1,I1, n,3
1,II, and n,4

1,II = parameters of the interpolating  

polynomial for the nth subinterval of the hydraulic characteristics table of the even-

numbered outlet at the distal off-take node, n = the index of the subinterval in which 

[Hℓ
1,II]n   [Hℓ

1,II]i   [Hℓ
1,II]n+1, and [Hℓ

1,II]n and [Hℓ
1,II]n+1 = the total head corresponding 

to the lower and upper limits, respectively, of the nth subinterval of the outlet hydraulic 

characteristic curve. The iterative solution of Eq. 28 proceeds as follows: 
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1. Set the iteration index, i = 1, and   I1,iII1, HH


= ; 

2. Evaluate Eq. 31 as a function of  iII1,H


; 

3. If  ( )iII1,HF    10-5, the numerical solution has converged and end computation. If, on  

    the other hand, 10-5 <  ( )iII1,HF   proceed to the next step;  

4. Compute   1+iII1,H


as a function of   iII1,H


(Eq. 30); 

5. Set i = i+1, Evaluate Eq. 31 as a function of   iII1,H


; 

6. If  ( )iII1,HF   10-5 the numerical solution has converged and end computation. If, on  

    the other hand, 10-5 <  ( )iII1,HF   repeat steps 4 through 6.  

 

Once the total head at each of the distal outlets (Hℓ
1,I and Hℓ

1,II) is computed the 

corresponding discharges (Qℓ
1,I and Qℓ

1,II) as well emerge from the solution. The 

discharge through the distal segment of the mainline, Q1, can then be computed with Eq. 

25. The velocity head at a point just upstream of the distal off-take node of the mainline 

can be computed as a function of Q1 and Dm1. The sum of the pressure head and velocity 

head at a point just upstream of the distal off-take node, (Ed)1, can then be computed with 

Eqs. 23 or 24 and the corresponding pressure head, (hd)1, follows from Eq. 16. The 

pressure head at a point just downstream of the (k+1)th node, (hu)1 (Figure 4), can then be 

computed with the energy equation written for the distal segment of the mainline (i.e., 

between the 1st and 2nd nodes of the sprinkler main), with Eq. 18. 

 

Equations and numerical solution for all segments upstream of the distal segment of 

the mainline 

                For all mainline segments upstream of the distal segment, say the kth mainline 

segment (Figure 4), computation proceeds as follows: If the computational node at the 

upstream end of the kth mainline segment (node k+1) is not a lateral inlet, then the 

incoming discharge to the computational node, Qk+1, is the same as the through flow 

discharge, Qk, computed in the preceding step. Hence, the local head loss and associated 

changes in velocity and pressure head, if any, across the (k+1)th node can be computed 
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directly. However, if the (k+1)th node consists of a lateral inlet, then both the incoming 

flow to the computational node, Qk+1, and the (k+1)th lateral inlet discharge, Qℓ 
k+1, are 

unknowns. Three equations derived through the application of the energy equation across 

the (k+1)th node (along the mainline and along the inlet segments of the laterals), 

coupled with the lateral hydraulic characteristics functions, Q(Hℓ
,k+1,I) and Q(Hℓ

,k+,I1), and 

the continuity equation applied to the (k+1)th node can solved iteratively for the 

unknowns.   

           Following the approach described for systems with single-line laterals layout 

configuration, the energy equation for the through flow across the (k+1)th node can be 

obtained by adapting Eq. 19 for the (k+1)th node. In addition, two equations with the 

same form as those of Eqs. 23 and 24 can be derived between a point just upstream of the 

(k+1)th off-take node of the mainline and each of the outlets obtaining their supply from 

the (k+1)th node. The energy equation between the (k+1)th off-take node and the 

corresponding odd-numbered lateral is 
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and along the path between the (k+1)th off-take node of the mainline and the even-

numbered outlet at the same computational node is given as 
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Eqs. 19, 37, and 38 are functions of six variables: (Ed)k+1, Hℓ 
k+1,I, Hℓ 

k+1,II, Qℓ 
k+1,I, Qℓ 

k+1,II, 

and Qk+1. Application of the principle of continuity at the (k+1)th mainline off-take node 

yields 

 

)(
1,k1,k 391

III

kk QQQQ ++

+ ++=   

 

Considering the hydraulic characteristics functions of the corresponding odd-numbered 

and even-numbered outlets, two additional equations of the form given in Eqs. 26 and 27 

can be obtained. Substituting Eq. 39 and applicable hydraulic characteristics functions in 

Eqs. 19, 37, and 38 and rearranging results in:  
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where 1, 2, 3, 4, and 5 are coefficients and 1, 2, and 3 are constants in Eqs. 40-42, 

given as:  
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Because the mainline outlet discharges, Qℓ 
k+1,I and Qℓ 

k+1,II, are functions of, Hℓ 
k+1,I and  

Hℓ 
k+1,II (i.e., functions of the from given by Eqs. 26 and 27, applicable to the (k+1)th 

node), it can be noted that Eqs. 40-42 represent a system of nonlinear equations with 

three unknowns ((Ed)k+1, Hℓ 
k+1,I, and Hℓ 

k+1,II) that can be solved iteratively. With the 

Newton-Raphson method, a system of linear equations of the form given in Eq. 44 is 

solved during each iterative step:   

 

  )(iii 441 FxJ −=+  

 

In Eq. 44, following convention the bold faced variables represent a matrix or vectors; 

J i = the Jacobian matrix, for Eqs. 40-42, evaluated based on the values of the variables at 

the ith iteration, xi+1 = vector of the incremental change in the variables during the 

(i+1)th iteration, and F i = the function vector evaluated based on the values of the 

variables at the ith iteration:  
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In Eq. 45, F1 
i, F2 

i, and F3 
i are the functions given in Eqs. 40-42, respectively, evaluated 

based on the values of the variables at the ith iteration and F is the transpose of the 

gradient vector of the function, F. The elements of the Jacobian matrix evaluated based 

on the values of the variables at the ith iteration are  
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In Eq. 50, f′([Hℓ]
i) = the derivative of the Darcy-Weisbach friction factor for a mainline 

outlet pipe section, which could be odd- or even-numbered. Note that Hℓ and Dℓ need to 

be superscripted with appropriate indices depending on the mainline off-take node and 

outlet combination.  

The iterative solution of the nonlinear system of equations (Eqs. 40-42) proceeds as 

follows:  

1. Set iteration index i = 1 and initialize variables:   Ik,iI1,k HH


=+  and    IIk,iII1,k HH


=+  

and compute ( )  i

k
dE 1+ with Eq. 40;  

2. Substitute ( )  i

k
dE 1+ ,   iI1,kH +


, and   iII1,kH +


in Eqs. 41 and 42 and compute F2

i and F3
i;     

3. If both F2 
i and F3 

i are less than 10-5, solution has converged and end computation. If, 

on the other hand, either of the function values (F2 
i or F3 

i) exceed 10-5, then proceed 

to the next step;   

4. Compute the elements of the Jacobian matrix, J i, based on the values of the variables 

at the ith iteration (Eqs. 46-48); 

5. Solve Eq. 44 for xi+1 with Cramer’s rule:  

     5a. Compute the determinant of the Jacobian matrix, J i, based on the values of the 

 variables at the ith iteration; 

     5b. Compute xi+1 with Eq. 51:                                                     
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            In Eq. 51, (.) = the determinant of matrix (.). The matrices corresponding to 

 the numerators of Eq. 51; ( )( )i
k

dE 1+ , ( ) iI1,kH +
 , and ( ) iII1,kH +

 ; are obtained by  

 modifying the Jacobian matrix at the ith iteration, J i, through substitution of the  

            function vector, F i, at an appropriate column corresponding to each variable; 

      5c. Update the variables: ( )  ( )  ( )  1

11

1

1

+

++

+

+ +=
i

k
di

k
di

k
d EEE  ,  

                  11 +++++ +=
iI1,kiI1,kiI1,k HHH   , and       11 +++++ +=

iII1,kiII1,kiII1,k HHH   ; 

6. Set i = i+1 and evaluate the function vector (compute F i), Eq. 45, based on the 

values of the variables computed in step 5c above; 

7. If F i 10-5 the solution has converged and end computation. If not, repeat steps 4 

though 7 above.  

 

The algorithms described above represent the basic building blocks of the hydraulic 

computational procedure implemented in the field-scale sprinkler irrigation system 

design and simulation model (SprinklerModel) developed as part of the current study. 

The specifics of the implementation of these algorithms vary depending on the 

computational mode and this is discussed in Chapter 3. In the following section, however, 

the interpolation scheme, used to compute mainline outlet discharges as a function of the 

total head from a table of values generated during the system characterization phase 

(section 3.1), is described.   

 

2.4 Cubic spline interpolation  

 For a given mainline water off-take node (say the kth node), the function relating 

the discharge from an outlet obtaining its supply from the kth off-take node with total 

head, Q(Hℓ
k), is defined in the form of tables of values, generated during the system 

characterization computation phase. Hence, in system design and simulation 

computations (sections 3.2 and 3.3), mainline outlet discharges are interpolated from the 

respective Q-H tables. As described for sprinkler systems with single-line laterals layout 

configuration, linear interpolation can be used with satisfactory accuracy, provided the 

step size used to discretize the Q-H table is sufficiently fine. However, for systems with 

double-line laterals, the applicable numerical solution requires the specification of 



 32 

derivatives, Q’(H),  and function values, Q(H). With piecewise linear fit the derivatives at 

the data points are not continuous, hence application of the linear interpolation approach 

to systems with double-line laterals layout configuration may not lead to accurate results. 

On the other hand, given a function defined over a closed interval (e.g., a Q-H table), its 

cubic spline interpolant has not only continuous first and second derivatives at the data 

points but it also exhibits the least oscillatory behavior among higher order interpolating 

polynomials (Mathews and Fink, 2004), hence it can be considered the most accurate. In 

the model described here, the cubic spline interpolation scheme is used to interpolate the 

mainline outlet discharge function, Q(H), and approximate its derivative, Q’(H), from the 

corresponding lateral hydraulic characteristics curve. To simplify subsequent discussion, 

within this section, a system with single-line laterals layout configuration is assumed; 

with the implication that appropriate notational modifications can be applied to adapt the 

resulting procedure and equations for systems with double-line laterals configuration.     

 

2.4.1 Description, properties, and equations for cubic spline parameters 

  The cubic spline interpolation scheme involves piecewise cubic approximation of 

a function (defined over a closed interval and quantified at a finite number of data points 

within the interval), such that the cubic polynomials (interpolants) exactly match the 

function at the data points. Furthermore, cubic spline interpolation requires that the 

interpolants for consecutive subintervals have the same first and second derivatives at a 

common data point. In the current application, the function to be approximated is the 

discharge at a mainline outlet (or lateral inlet) obtaining its supply from the kth off-take 

node, Qℓ
k, expressed in terms of the corresponding total head, Hℓ

k. Considering a closed 

interval [Hℓ
k,min,Hℓ

k,max], over which the function Qℓ
k is defined, with N subintervals and 

N+1 data points and a cubic polynomial, S(Hℓ
k), as the interpolant for Qℓ

k over a 

subinterval, [(Hℓ
k)n, (Hℓ

k)n+1], where n is an integer such that n[0,N-1]; it follows from 

the preceding description that S(Hℓ
k) can be described as cubic spline, if there exist N 

polynomials of the form (e.g., Mathews and Fink, 2004): 
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with the following properties  
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where Sn  is the cubic interpolant for the nth subinterval, [(Hℓ
k)n, (Hℓ

k)n+1]; (Hℓ
k)n = the 

lower limit of the nth subinterval; (Hℓ
k)n+1 = the upper limit of the nth subinterval; n,1 

n,2, n,3, and n,4 = are parameters of the interpolating polynomial of the nth subinterval; 

'

nS  = the first derivative of the cubic interpolant for the nth subinterval; and ' '

nS = the 

second derivative of the cubic interpolant for the nth subinterval. Note that given known 

conditions at the interval bounds over which the Q(Hℓ
k) function is defined, it can be 

shown that there exists a unique cubic spline interpolant, to the function, with the 

properties listed in Eqs. 53-56 (Mathews and Fink, 2004; Burden et al., 1981).  

 In order to simplify the notations in subsequent discussion within the current 

section, the total head at the hydraulic characterization node of the lateral obtaining its 

supply from the kth mainline off-take node, Hℓ
k, is referred to as H and the discharge will 

be defined as Q instead of Qℓ
k. On the other hand, the notations Hn and Qn, or Q(Hn), are 

used to refer to the nth data point in the Qℓ
k-Hℓ

k table generated during the lateral 

hydraulic characterization computation. 

 Considering a mainline outlet, the use of cubic polynomials (of the form given in  

Eq. 52) to interpolate its Q(H) function over the interval [Hmin,Hmax] requires that the 

parameters of the cubic polynomial for each subinterval be defined. It can be shown that 

for each subinterval (say the nth subinterval, [Hn,Hn+1]), the parameters of the associated 

cubic interpolant [n,1, n,2, n,3, n,4] can be expressed in terms of the function values 

(Qn, Qn+1), second derivatives of the interpolant at the lower and upper limits of the 

subinterval ( ' '

nS , ' '

nS 1+ ), and the subinterval size, Hn = Hn+1-Hn, as follows:  
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Constant of the cubic spline function (Eq. 52) , n,1:  Considering the cubic interpolant  

for the nth subinterval, Sn; an expression for the constant, n,1, can be derived by 

evaluating Sn at the lower limit of the subinterval (H = Hn) and noting property (a) of a 

cubic spline, resulting in   

  

)(, 571 nn Q=  

 

Coefficient of the linear term of the cubic spline (Eq. 52), n,2: Evaluate the cubic 

polynomial for the nth and (n+1)th subintervals, Sn and Sn+1, at H =Hn+1. Equating the 

resulting expressions (note property (b) of a cubic spline, Eq. 54) and rearranging yields 

an expression for the coefficient of the linear term of Sn, n,2, as a function of n+1,1; n,1; 

n,3; n,4; and Hn. Substituting the expressions for n,1; n,3; and n,4 (Eqs. 57, 59, and 60) 

in the resulting equation yields 
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Coefficient of the quadratic term of the cubic interpolant, n,3: Differentiating the cubic 

function for the nth subinterval, Sn (Eq. 52), twice and evaluating the resulting expression 

at the lower limit of the subinterval (H = Hn), yields:     
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Coefficient of the cubic term of the interpolant, n,4: Differentiate Eq. 52 twice to obtain 

the second derivatives of the cubic spline for the nth and the (n+1)th subintervals and 

evaluate each of the resulting expressions at H = Hn+1. Equating the resulting expressions 

(noting property (d) of a cubic spline, Eq. 56) and rearranging yields an equation for the 

coefficient of the cubic term in Eq. 54, n,4: 
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Note that in Eqs. 58-60, the cubic spline parameters are expressed in terms of the second 

derivatives of the interpolant, which are unknown. However, based on the properties of a 

cubic spline listed above (Eqs. 53-56), for each mainline outlet a system of linear 

equations can be formulated with the second derivatives of the cubic interpolant as the 

unknowns. After having been coupled with known boundary conditions, this system of 

equations can be solved simultaneously for the unknowns. The solution can then be 

substituted in Eqs. 58-60 to obtain estimates of the cubic spline parameters for each 

subinterval. There are two alternative approaches for deriving the system of linear 

equations (Matthews and Fink, 1999; Burden et a, 1981), both approaches leading to the 

same equations. In subsequent discussion the approach described by Matthews and Fink 

(1999) is followed.  

 

2.4.2 Formulation of a system of linear equations with the second derivatives of the  

         cubic spline interpolants as variables 

 Noting that the piecewise interpolation function, Sn, for the subinterval [Hn,Hn+1] 

is a cubic polynomial, it follows that the second derivative of Sn is a linear function of 

H over the same interval. Hence, the interpolation formula for the second derivative of 

the cubic interpolant of the nth subinterval, )H(S ''

n , can be expressed as: 

 

 ( ) )(
'''''' 611

1

n

n
n

n

n
nn

H

HH
S

H

HH
SHS



−
+

−
= +

+          

 

where ,HHH),H(SS nnnn

''''

n −== +1  and n is an integer such that n[0,N-1]. 

Integrating Eq. 61 twice results in the cubic function, Sn(H), with two integration 

constants. Expressions can be derived for the integration constants in terms of the 

function values, the second derivatives of the interpolant, and the subinterval size by 

evaluating the cubic function at the limits of the subinterval (H = Hn and H = Hn+1) and 

taking into consideration property (a) of a cubic spline (Eq. 52). Back substituting these 

expressions in the cubic function, Sn(H), and rearranging results in:\ 
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Although Eq. 62 is cubic in H, it is a linear function of the second derivatives (the 

unknowns). Based on property (c) of a cubic spline (Eq. 54), Eq. 62 can be written in a 

form that can readily be solved for the unknowns (the second derivatives). Accordingly, 

differentiating Eq. 62 once with respect to H and evaluating the resulting expression at 

the lower limit of the nth subinterval, H = Hn, and rearranging yields the expression for 

)H(S n

'

n :  
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Similarly, the ( )HS ' equation for the (n-1)th subinterval can be obtained and evaluated at 

H = Hn resulting in an expression for ( )n

'

n HS 1− . Noting property (c) of cubic spline and 

equating the expression for ( )n

'

n HS  given in Eq. 63 with ( )n

'

n HS 1− and rearranging yields:   
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Equation 64 is a linear equation relating the function values, Q(H), at three consecutive 

data points (n-1, n, and n+1) straddling the subintervals [Hn-1,Hn+1] with the 

corresponding second derivatives. Considering N+1 data points and N subintervals 

(covering the interval [Hmin,Hmax] over which a mainline outlet Q(H) function is defined), 

a system of N-1 linear equations with N+1 unknowns of the form given in Eq. 66 can be 

formulated:    
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 In Eqs. 65-67, n is    
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When coupled with known boundary conditions at the upper and lower limits of the 

interval, [Hmin,Hmax]; the linear system of equations reduces to a form (with 2(N-1)  

equations in 2(N-1) unknowns) that can be solved simultaneously. A list of alternative 

standard boundary conditions applicable to the solution of the linear system (Eqs. 65-67) 

is described by Mathews and Fink (2004). They involve specification of actual values of 

the second derivatives at the interval boundaries, some approximations of the second 

derivatives based on simplifying assumptions, or expressions that can be used to compute 

the second derivatives at the boundaries as a function of the corresponding first 

derivatives. A widely used and relatively simple approach, referred to as the natural 

boundary condition, involves setting the second derivatives at the interval limits to zero. 

This approach is often used for fitting experimental data and is also used in the current 

application. With the natural boundary condition, the expression ''

nn SH 11 −− and ''

nnSH 1+  in 

Eqs. 65 and 67, respectively, becomes zero. The resulting system of linear equations can 

then be expressed in vector form as 

 

)(γδHS '' 69=  

 

Following convention, in Eq. 69 the bold faced notations are used to represent matrices 

and vectors, where: 
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It then follows from Eqs. 65-67 that in Eq. 70 the elements of the coefficient matrix,  

H (a tridiagonal matrix), can be computed with the following recursive relationships:  

 

     )(, 71121 −= − NnforHa nn   

   ( )   )(, 72112 1 −+= − NnforHHb nnn   

     )(, 7321 −= NnforHc nn   

 

2.4.3 Solution of the linear system of equations with the second derivatives of the cubic  

         splines as variables 

 

The system of equations given in Eq. 69 can be solved efficiently with an LU 

factorization algorithm (Burden et al., 1981; Harris and Stocker, 1998; Press et al., 2000). 

The procedure is summarized in the following steps: (1) Factorization of the tridiagonal 

matrix, H (Eq. 70):  write H as the product of a lower and an upper triangular matrix, 

LH  and UH, respectively:   

 

)(γSULδHS ''

HH

'' 74==  

 

Equation 74 can be given as  

 

)(ζLH 75=  

 

where   is a vector of the form  

 

)(ζSU ''

H 76=  

 

Using the method of Crout’s (Burden et al., 1981; Harris and Stoker, 1998), the following 

is a summary of the steps used to factorize the H matrix into the corresponding LH and 

UH matrices: 
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where l and u = elements of the LH and UH matrices, respectively; and the subscripts of  

l or u represent the row and column of the matrix an element belongs to. Elements of the 

LH and UH matrices are computed as a function of the coefficient matrix of the linear 

system of equations, H (Eq. 69), with the following equations:   
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(2) Solve Eq. 75 for the unknown vector,  : Noting that the LH matrix is a special case of 

a lower triangular matrix (with nonzero elements only along its main diagonal and the 

sub-diagonal elements immediately below the main diagonal, Eq. 77); Eq. 75 can then be 

solved for   through forward substitution by using equations of the form: 
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where n = the nth element of the  vector (Eq. 75).  
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(3) Solve Eq. 76 for the variable vector, ''S : Equation 76 can be solved for the second 

derivatives of the cubic splines through backward substitution with: 

 

)(],[
''

,

'''' 81211 11 −−=−== ++ NnforSuSandNnforS nnnnnnn   

 

The algorithm described above has a unique solution provided the tridiagonal coefficient 

matrix, H, is diagonally dominant (Press et al., 2000). A tridiagonal matrix is considered 

diagonally dominant, if for each row of the matrix the absolute value of the diagonal 

element exceeds the sum of the absolute values of the elements on the sub-diagonals 

immediately above or below the main diagonal. It can be noted from Eqs. 71-73 that the 

corresponding coefficient matrix, Eq. 69, is always diagonally dominant, if the 

subinterval size is constant. In the current application the subinterval size is constant, 

hence the resulting matrix has the desired property of diagonal dominance and 

application of the algorithm described above will result in a unique solution to the system 

of linear equations expressed in Eq. 69. Once the vector of the second derivatives of the 

cubic spline is computed, then the parameter estimates for each cubic spline interpolant 

can be calculated with Eqs. 57-60.  

 

The basic hydraulic equations governing steady flow in a field-scale solid set sprinkler 

system, the numerical solution algorithms, and the interpolation scheme used for 

coupling lateral and mainline hydraulics (as implemented in the SprinklerModel 

developed in this study) are presented in this chapter. The numerical procedures 

described here constitute the basic building blocks of the hydraulic model. However, the 

specifics of their implementation vary depending on the computational modes in which 

the model is run and this is discussed in the next chapter. 

 

Chapter 3. Computational modes  

 

The sprinkler model presented here (SprinklerModel) can be run in any one of the 

following four computational modes (Figure 5): (i) sprinkler system hydraulic 

characterization, (ii) Sprinkler system hydraulic design, (iii) Sprinkler system hydraulic 

simulation, and (iv) Sprinkler system field evaluation.  
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Given the layout of a field-scale solid set sprinkler system, the diameter(s) of the pipes, 

nodal elevations, the friction factor, the locations, and types of pipe  

fittings/appurtenances along with their associated local head loss coefficients; the 

hydraulic characterization mode provides the functionality for computing the system 

hydraulic characteristics curve defined at the mainline inlet and also the Q-H relationship 

for each lateral defined at its hydraulic characterization node (Figure 4). With the 

hydraulic design mode, the minimum acceptable sprinkler pressure head in the system is 

specified at the input. The model then computes the field-scale distribution of sprinkler 

pressure head and discharge and the corresponding total dynamic head such that the 

design requirement with respect to the minimum acceptable sprinkler pressure head is 

satisfied (Figure 4). On the other hand, the system simulation functionality provides a 

capability to compute the distribution of pressure and discharge over the sprinkler 

network, given a design scenario or a certain total head at the mainline inlet. The  

sprinkler system field evaluation functionality provides a capability for computing 

evaluation-plot scale and field-scale irrigation uniformity based on data collected through 

standard field tests or for a hypothetical irrigation scenario (Figure 5).    

 During system design and simulation computations, the tables of Qℓ
k-Hℓ

k values 

(generated for each lateral during the system characterization phase) are used as the head-

discharge characteristics of the respective mainline outlets. Hence, system 

characterization computation is always conducted prior to system design and simulation 

computations. In addition, system design computation is followed by system simulation.  

 A description of these model functionalities with respect to input data 

requirements, computational procedure, and output data types is presented subsequently. 

Although subsequent descriptions of the system hydraulic characterization, design, and 

simulation computations apply to systems with single-line or double-line laterals layout 

configurations, to simplify the discussion the notations used are those of single-line 

laterals. Appropriate notional modifications can be applied to adapt the procedures 

developed here for sprinkler systems with double-line laterals layout configuration. 
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      Project Configuration Options:

        *Computational mode: 

             - Hydraulic characterization, or

             - Hydraulic design, or

             - Hydraulic simulation, or

             - Field evaluation

       *Lateral configuration:

             - Single-line laterals, or

             - Double-line laterals

       *Friction calculation option

             - Darcy-Weisbach,  or

             - Hazen-Williams 

Common Inputs: 

Geometric (pipe diameters, lengths of pipe sections, 

locations of computational nodes, mainline outlet 

diameters, riser pipe diameters)

Hydraulic (pipe hydraulic resistance coefficients, local 

loss coefficients, sprinkler characteristics)

Pressure head range of distal sprinkler on distal lateral

Topographic data (elevations of computational nodes)              

Simulation Mode Input: 

Total dynamic head,  H s

Design?

Hydraulic charcaterization computation

Hydraulic design computation 
Hydraulic simulation computation 

Design Mode Input:

- Design sprinkler pressure head, h s
D

- Minimum accpetable sprinkler pressure 

  head, h s
ma

- Maximum permissible velocity, V max,

N

Y

Field evaluation?

N

Field evaluation computaion

(Evaluation plot scale and field-scale 

irrigation uniformity)

Y

Inputs:

Number of uniformity evaluation plots in a field

Number of rain gage rows and columns in a uniformity 

evaluation plot

Rain gage row and column spacing

Uniformity evalutaion plot size and field size

Arrays of precipitaion depths collected in rain gages 

Simulation

 

 

              Figure 5. Flow diagram showing computational modes and input data    
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3.1 Sprinkler system hydraulic characterization mode  

 The goal of a hydraulic characterization computation is to generate an array of 

data relating the total head, H, with discharge, Q, at the hydraulic characterization node, 

ℓ, of each lateral and at the mainline inlet (Figure 6). Although the hydraulic 

characterization node along a lateral does not represent a physical outlet of the mainline, 

for computational purposes it is considered as such (section 2.3, mainline hydraulics). 

Hence the hydraulic characteristic curve generated for each lateral (Qℓ
k-Hℓ

k) also defines 

the hydraulic characteristics of the corresponding mainline outlet. The mainline outlet 

hydraulic characteristics curves along with the interpolation procedure described above 

provide the interface for coupling numerical solutions, of the lateral and the mainline 

hydraulic equations, described in the preceding sections.  

 As can be noted form Figure 6, the hydraulic characterization computation is 

performed in two consecutive steps: (1) Determination of the hydraulic characteristics of 

the mainline outlets (Qℓ
k -Hℓ

k tables) along with the parameters of the respective  

interpolating polynomials (section 2.4) and (2) Determination of the system hydraulic 

characteristics curve, Q(Hs), through iterative computations along the mainline. 

 

Hydraulic characterization of mainline outlets   

 

Computation: Referring to the discussion on lateral hydraulics, it can be shown that for a 

lateral (say the lateral that obtains its supply from the kth off-take node) with a given set 

of geometric, topographic, and hydraulic attributes, if the pressure head at the distal  

sprinkler, hs1
k, is set; then a unique value of Qℓ

k and Hℓ
k can be computed at the hydraulic 

characterization node of the lateral (Figures 4 and 6). Systematic variation of hs1
k within a 

predefined range, [hs1
k,min,hs1

k,max], results in an array of pressure head values for the 

distal sprinkler of the lateral (Figures 6 and 7). For each hs1
k value, within the predefined 

range, hydraulic computations along the lateral (section 2.2) results in the hydraulic 

characteristic curve of the lateral (or of the corresponding mainline outlet), Q(Hℓ
k), 

Figures 6 and 7. The pressure head range at the distal sprinkler of the distal lateral, 

[hs1
1,min, hs1

1,max], is specified at the input. Given the range of hs1
1, the hydraulic 

characterization computation of the distal lateral proceeds as follows (Figures 6 and 7):   
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(1) The specified pressure head range is discretized into N subinterval and N+1 data 

points (or pressure head values, (hs1
1)n, where n is a data point index such that n[0,N]) 

and (2) Using the numerical procedure described for laterals, for each (hs1
1)n value 

(within the specified range) compute the corresponding (Qℓ
1)n-(Hℓ

1)n 
 value. 

The computation to define the hydraulic characteristics of all the laterals upstream 

of the distal lateral follows the same basic steps described above. However, the fact that 

the total head along the mainline decreases in the direction of flow (due to energy loss) 

implies that the range of the Qℓ
k-Hℓ

k table for each lateral should be increased as the 

system characterization computation proceeds upstream along the main. Hence, in Figure 

7 the following relationships must hold for successive laterals: hs1
1, max

 < hs1
2,max < . . . < 

hs1
K,max. Noting that the total head at the hydraulic characterization node of 

the lateral that obtains its supply from the kth mainline off-take node, Hℓ
k, is an increasing 

function of the corresponding hs1
k, the following relationship should also hold for 

successive laterals: Hℓ
1,max <Hℓ

2,max <  . . . < Hℓ
K,max. In the model described here this  

requirement is met by a progressive increase in the maximum pressure head at the distal 

end sprinkler of the laterals as the computation proceeds upstream, while keeping the 

minimum pressure head at the same level as that specified for the distal end sprinkler of 

the distal lateral. A power function of the form given in Eq. 82 is used to compute the 

maximum pressure head for the distal sprinkler of a lateral, hs1
k,max, as a function of the 

maximum pressure head specified at the input for the distal end sprinkler of the distal 

lateral, hs1
1,max: 

 

( ) )(
,max,max

82
1

1311
2

s

k

s hkh  
+=  

 

In Eq. 82, 1 (-), 2  (-), and 3 (-) are parameters, the values of which can be specified at 

the input and k = mainline off-take node index (k=1 for the distal end lateral and is 

incremented by one for each subsequent lateral upstream). Note that the lateral number 

index is the same as the mainline off-take node index for a system with single-line lateral 

layout. However, for systems with double-line laterals layout, the lateral number index 

can be different from the off-take node index (Figure 4). The parameters in Eq. 82 can be 

varied depending on the largest required range of the Qℓ
k-Hℓ

k table and the desired rate of  
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Figure 7 Schematization of a field-scale solid set sprinkler system depicting system  

   hydraulic characterization computation  

 

increase as the computation proceeds upstream. In order for the maximum pressure head 

at the distal sprinkler of the distal lateral computed with Eq. 82 to be equal to the user 

specified value, the sum of 1 and 3 should be equal to 1.0. In addition, 2 should be 

greater than zero so that the resulting maximum distal end sprinkler pressure head 

increases with each lateral as the computation proceeds upstream starting from the distal 

end lateral. Based on numerical experiments, in the current program setting, default 

values of 1 = 0.15, 2 = 1.45, and 3 = 0.85 are used, but these values can be changed if 

necessary. For systems with double-line of laterals two sets of parameters are used: 1 = 



 47 

0.15, 2 = 1.45, and 3 = 0.85 for odd-numbered laterals and 1 = 0.2, 2 = 1.45, and 3 = 

0.8 for even-numbered laterals. This allows for flexibility in hydraulic characterization of 

the two sets of laterals and improves model robustness. 

 

Considerations in setting the pressure head range for the distal sprinkler of the distal 

lateral: The upper limit of the user specified pressure head range of the distal end 

sprinkler of the distal lateral should be sufficiently large so that the pressure head ranges 

computed for the upstream laterals have adequate spread. The lower limit of the pressure 

head range specified at the input should be large enough to maintain positive pressure in 

the lateral. This is particularly important when the lateral has a steep negative slope 

and/or a relatively large diameter. In general both the lower and upper limit of the 

pressure head range specified for the distal sprinkler of the distal lateral should take into 

account the pressure head range of the sprinkler specified in the manufacturer’s 

catalogue. Once the maximum pressure head at the distal end sprinkler of a lateral is 

computed with Eq. 82, the pressure head range for the distal end sprinkler of the lateral is 

defined. The specified pressure head range for the distal sprinkler of the lateral can then 

be discretized and the hydraulic characteristics curve for the lateral can be generated by 

applying the steps outlined above for the distal end lateral. 

 Typically sprinkler pressure head ranges that are larger than those specified in the 

manufacturer’s catalogue should be used so that the head-discharge characteristic curves 

of the mainline outlets have sufficient spread, which contributes to model robustness. 

However, if the sprinkler pressure heads computed during the hydraulic design or 

simulation phases fall outside the pressure head ranges specified in the manufacturer’s 

catalogue by a significant margin, then the program prints cautionary note that the results 

may not be accurate. Based on which the design can be revised by selecting pipe sizes 

that are compatible with design limitations of the sprinklers or by selecting sprinklers 

with different characteristics and modifying the spacing accordingly or some combination 

thereof. For simulation problems, on the other hand, such a result shows under current 

irrigation practices the sprinklers are being operated at pressure heads that are outside the 

design ranges, hence their performance could be suboptimal. In general the number and 

size of the subintervals into which the distal end sprinkler pressure head range is 
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discretized is the same for all laterals in a given problem, but it can be varied by the user 

from one problem to another. A finer discretization (large number of subintervals), within 

the limits of rounding-off errors, implies that the head-discharge characteristics of the 

associated mainline outlet can be interpolated more accurately from the resulting Qℓ-Hℓ 

table, but it also means a heavier computational burden. Hence, the selection of the 

number of subintervals, into which the distal end sprinkler pressure head ranges are to be 

discretized, needs to balance the computational requirements with considerations of 

accuracy. Based on numerical experiments, for most practical applications discretization 

of the sprinkler pressure head range into four hundred subintervals, with four hundred 

and one pressure head values has been deemed satisfactory.  

 

Hydraulic characterization mainline inlet   

 Following hydraulic characterization of the mainline outlets and the determination 

of the parameters of the cubic spline interpolants for each outlet (Figure 6); computations 

can be conducted along the main to define the hydraulic characteristics of the field-scale 

sprinkler system (Figures 6 and 7). As described above during lateral hydraulic 

characterization computation a table of Qℓ
k-Hℓ

k values with N+1 data points is generated 

for each mainline outlet, including the distal outlet. Based on which, system hydraulic 

characterization computation along the mainline can proceed as follows (Figures 6 and 

7): (1) Set the total head at the distal mainline outlet Hℓ
1 to Hℓ

1,min and conduct a hydraulic 

computation along the mainline (section 2.3) to determine the corresponding total head 

and discharge at the system inlet (Hs
min,Qs

min) and (2) Repeat step 1 above for each (Hℓ
1)n 

in the range [Hℓ
1,min,Hℓ

1,max], where n is a data point index such that n[0,N] and (Hℓ
1)0 = 

Hℓ
1,min and (Hℓ

1)N = Hℓ
1,max. In addition, for each (Hℓ

1)n value at the distal mainline outlet 

the preceding computation generates the distribution of specific energy, its components, 

and the corresponding outlet discharges along the mainline.   

 The system hydraulic characterization computational mode produces output that 

can directly be used in pump selection and/or evaluation. However, the main significance 

of the system hydraulic characterization computation is in generating the data sets (Qℓ
k-

Hℓ
k
  tables for each mainline outlet) required for executing subsequent computations: 

hydraulic deign or simulation, described next.  
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3.2 Sprinkler system hydraulic design mode  

 When the model is run in the system design mode, the design sprinkler pressure 

head, hs
D, the minimum acceptable sprinkler pressure head, hs

ma, along with the 

hydraulic, geometric, and topographic characteristics of the sprinkler system are    

specified at the input (Figure 8). The model then computes the field-wide distribution of 

sprinkler pressure head and discharge and the corresponding total dynamic head such that  

the pressure head at the critical sprinkler (the sprinkler with the minimum pressure head 

in the irrigated field, hs
min) is sufficiently close to the acceptable minimum. As can be 

noted from Figure 8, system design computation is performed in four distinct steps:    

1. Conduct system hydraulic characterization computation: this step defines the 

hydraulic characteristic curve (Qℓk-Hℓk table) for each mainline outlet and computes 

the parameter estimates of the corresponding cubic interpolant (Figure 6);  

2. Along each lateral determine the critical sprinkler, associated pressure head, and the 

total head required at the lateral inlet for the (computed) minimum sprinkler pressure 

head along the lateral, hs
k,min, to be sufficiently close to hs

ma. For the lateral obtaining 

its supply from the kth off-take node of the mainline (referred here as the kth lateral), 

the computation proceeds as follows:  

      (2a) Set the pressure head at the distal end sprinkler of the kth lateral, hs1
k , to hs

ma  to    

   initiate the iterative computation. Note that this step assumes that the minimum   

   sprinkler pressure head, hs
k,min, occurs at the distal end of the lateral; 

       (2b) Compute pressure head and discharge distribution along the kth lateral following 

    the procedure described in section 2.2 (lateral hydraulics):      

- If the lateral is installed on a level surface or on a surface with a positive slope           

  or with a small negative slope (such that the energy loss, due to friction and              

  local losses, exceeds the total drop in elevation over the entire length of  

  the lateral); then the assumption made in the preceding step regarding the  

     location of hs
min is correct and it is the distal end of the lateral.     

      - If the slope of the lateral is sufficiently steep that the gain in pressure head due  

       to the decrease in elevation exceeds the energy loss along the lateral, then the  

                 minimum sprinkler pressure head occurs somewhere along the lateral upstream  
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 Figure 8. Flow diagram showing the design computational mode  
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 of the distal sprinkler. In such a scenario, setting hs1
k = hs

ma will lead to a    

                pressure head profile along the lateral with an hs
k,min value that is less than hs

ma.  

                If the absolute difference between the hs
k,min and hs

ma exceeds a specified error  

     margin, then the solution is considered infeasible and an iterative computation  

                is initiated to determine the value of hs1
k that results in a pressure head profile  

                that meets the design requirement with respect to hs
ma. Pertinent numerical  

                procedure is presented in section 3.5.  

In order to illustrate this point a numerical example of sprinkler pressure    

                head profiles, along a lateral, obtained through an iterative computation of the    

                distal sprinkler pressure head, hs1
k, is summarized in Figure 9a. The lateral is                       

                installed on a relatively steep uniform slope of -0.3% and it has constant  

                diameter of 76.2mm and an absolute roughness of 0.127mm. It has 41         

     sprinklers installed at a regular spacing of 9.14m. The sprinkler pressure head  

                profile computed in the initial iteration (i.e., for hs1
k = hs

ma
 = 31.5m) has a  

                minimum sprinkler pressure head, hs
k,min, of  31.1m (occurring at 25th sprinkler  

                referenced from the distal end), a value less than the specified hs
ma of 31.5m  

                (Figure 9a). Considering an error margin of 10-5, this solution is deemed                

     infeasible. Hence, an iterative computation is initiated to determine the hs1
k  

                value that meets the design requirement. As can be noted from Figure 9a, a  

     pressure head profile along the lateral with an hs
k,min value of 31.5m is obtained            

                for hs1
k = 31.9m.     

3.  Repeat step 2 above for all the laterals and determine the critical sprinkler for each  

     lateral, the required total head at the corresponding mainline outlets, Hℓ
k,r, and the  

     critical sprinkler for the irrigated field. 

4.  Set the total head at the distal mainline outlet, Hℓ
1, to the required total head at the   

     distal outlet, Hℓ
1,r, and conduct hydraulic computation along the mainline to      

     determine the longitudinal distribution of the specific energy (its components) and   

     discharge following the procedure described in section 2.2 (mainline hydraulics).     

     The following scenarios can be discerned:  

    

 



 52 

(a)

Distance along lateral (m)

0 150 300 450

Distance along lateral (m)

0 150 300 450
S

p
ri
n

kl
e

r 
p

re
ss

su
re

 h
e
a

d
 (

m
)

31.0

31.5

32.0

S
p

ri
n

kl
e

r 
p

re
ss

u
re

 h
e
a

d
 (

m
)

31.0

31.5

32.0

Computed sprinkler pressure head

Minimum required sprinkler pressure head, 31.5m

(b)

Distance along mainline (m)

0 60 120 180

Distance along mainline (m)

0 60 120 180

E
G

L
 a

t 
m

a
in

lin
e
 o

u
tle

ts
  
(m

)

132

135

138

E
G

L
 a

t 
m

a
in

lin
e
 o

u
tle

ts
 (

m
)

132

135

138

Computed as a function of EGL at distal outlet

Minimum required EGL

hs1
k = 31.5m

Hl

1
 = 132.74m

Hl 

1
 = 134.1m

Hl 

1
 = 135.8m

Hl 

1
 = 136.6m

hs1
k = 31.9m

hs1
k
 = 31.8m

     

Figure 9: (a) The longitudinal sprinkler pressure head profile (along a lateral with a  

                negative slope) computed as a function of the distal sprinkler pressure head and  

                the minimum required sprinkler pressure head and (b) Energy line (EGL) along  

                a mainline computed as a function of total head at the distal outlet and the  

     minimum required total head at the mainline outlets                       
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       (4a) For each mainline outlet the required total head, Hℓ
k,r (computed in step 3             

               above), is at least equal to the total head computed at the outlet as a function of  

          the required total head at the distal outlet, Hℓ
k(Hℓ

1,r): Hℓ
k,r ≤ Hℓ

k(Hℓ
1,r). In which     

          case, a single sweep along the mainline (following the procedure described on  

          mainline hydraulics) establishes the distribution of specific energy and its  

          components; or   

   (4b) At one or more of the mainline outlets upstream of the distal outlet the 

     following holds: Hℓ
k(Hℓ

1,r) <Hℓ
k,r, which could be attributed to the hydraulic,   

     topographic, and geometric characteristics of the corresponding lateral(s). If                 

                the maximum difference between Hℓ
k(Hℓ

1,r) and Hℓ
k,r exceeds a preset error  

                margin, then the solution is considered infeasible. In which case, the total head  

                at the distal mainline outlet, Hℓ
1, needs to be computed iteratively such that at  

                the critical mainline outlet the absolute difference between Hℓ
k,r

 and Hℓ
k(Hℓ

1) is  

                reduced to a level within a specified error margin. The critical mainline outlet is  

                the outlet with the maximum difference between Hℓ
k(Hℓ

1,r) and Hℓ
k,r computed  

                in step 2 above. Pertinent numerical algorithm is presented in section 3.5. 

      In order to illustrate the point described above, a numerical example    

     is presented in Figure 9b depicting the distribution of total head along a   

                mainline for a sprinkler system with single-line laterals configuration. The  

                mainline consists of pipe section of 203.2mm diameter and all the laterals have  

                the same diameter (76.2mm), the same absolute roughness (0.127mm), and the  

                same number and type of pipe appurtenances. In addition, all the laterals except  

                the lateral obtaining its supply from the ninth mainline off-take node  

                (referenced from the distal node) are installed on a relatively flat negative slope  

                of -0.05%, but the lateral obtaining its supply from the ninth mainline off-take  

                node is installed on a relatively steep upward slope of 0.1%. As can be seen  

                from Figure 9b, for all the mainline outlets except the ninth outlet, the  

                minimum required total head, Hℓ
k,r, is the same and it is equal to 132.7m and  

                for the ninth mainline outlet it is equal to 136.7m. The total head at the ninth  

                mainline outlet computed in the initial iteration (for Hℓ
1 = 132.7m) is 132.8m  

                (Figure 9b). Considering an acceptable error margin of 10-5, this solution is  
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                considered infeasible. An iterative computation is initiated to determine the  

                total head at the distal outlet, Hℓ
1, such that the absolute difference between the  

     required total head for the ninth outlet and the total head computed for the same 

     outlet based on Hℓ
1 is reduced to a level within the specified error margin. As   

     can be noted from Figure 9b, an Hℓ
1 value of 136.6m yields an energy line   

                along the main with a total head at the ninth mainline outlet that is sufficiently  

                close to the required total head of 136.7m (Figure 9b). As can be noted from  

                Figure 9b the satisfaction of this requirement implies that at all of the mainline  

       outlets Hℓ
k,r

  Hℓ
k.    

5.  As can be noted from Figure 9b, for most of the mainline outlets the total head, Hℓ
k,  

     (computed in step 4) above could be significantly larger than their respective Hℓ
k,r  

     values (computed in step 3 above). Hence, the corresponding distribution of total        

      head (its components) and discharge along each lateral need to be computed  

      iteratively.  

 

Note that the design computational steps outlined above only ensure that the pressure 

head at the critical sprinkler in the irrigated field is equal to the minimum specified at the 

input. It may, however, produce a design scenario with sprinkler pressure heads that are 

appreciably larger than the optimal (design) sprinkler pressure heads. This may lead to 

significant spatial variations in pressure heads and discharges over the irrigated field and 

to low irrigation uniformity. Such a design can be considered feasible (if the sprinkler 

pressure head range is sufficiently close to the range given in the sprinkler 

manufacturer’s catalogue), but it may well be suboptimal. Nonetheless, acceptable 

designs can be developed through repeated simulations with different pipe sizes, system 

layout (i.e., sprinkler and lateral spacing), sprinkler characteristics, and pipe 

appurtenances.  

 

3.3 Sprinkler system hydraulic simulation mode  

 With the hydraulic simulation option, the hydraulic, geometric, and topographic 

characteristics of a field-scale sprinkler system along with the total dynamic head 

imposed at the mainline inlet, Hs, are specified at the input. The model then computes, 
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among other outputs, the corresponding field-wide spatial distribution of sprinkler 

pressure head and discharge over the irrigated field. Because the spatial distribution of 

sprinkler pressure heads and discharges are good indicators of field-scale irrigation 

uniformity, the hydraulic simulation functionality of the model described here can be 

considered as a useful tool in evaluating the potential irrigation uniformity of an existing 

system. As depicted in Figure 10, the hydraulic simulation computation is conducted in 

three distinct steps: 

1. Conduct system characterization computations: generate Qℓ-Hℓ tables for each of the  

      laterals following the procedure described above in section 3.1 and compute the   

      parameters of the interpolating polynomial following the procedure described in  

      section 2.4 (Figures 6).  

2.   Compute the distribution of specific energy and its components along the mainline   

      iteratively such that the total head computed at the mainline inlet (as a function of the  

      total head at the distal outlet, Hs(Hℓ
1)) is sufficiently close to the total dynamic head      

      specified at the input, Hs. Pertinent numerical procedure implemented in the model  

      described here is presented in section 3.5.   

3.   Once the distribution of total head, Hℓ
k, and outlet discharges, Qℓ

k, along the mainline  

      are computed (step 2 above), then the longitudinal distribution of total head and  

      discharge along the respective laterals need to be calculated iteratively. Pertinent  

      numerical solution is given in section 3.5. 

 

As described here and in section 3.2, during hydraulic design and simulation 

computations, the distal sprinkler pressure head along each lateral and the total head at 

the distal mainline outlet may need to be computed iteratively, such that a design and 

simulation requirement specified at the input is met. The specific conditions under which 

iterative solutions are required, formulation of the iterative hydraulic computational 

problems as one-dimensional optimization problems, and solution algorithm are 

presented in section 3.5. Before that, however, the field evaluation functionality of the 

model is presented.  
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               Figure 10 Flow diagram depicting hydraulic simulation computation   
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3.4 Sprinkler system field evaluation mode  

 Given a sprinkler irrigated field, the field evaluation mode provides the capability 

for computing irrigation uniformity at the field-scale and at the scale of a uniformity 

evaluation-plot. Field-scale irrigation uniformity is a function of several factors that are 

spatially variable, including: system hydraulics (a function of pipe sizes, hydraulic 

characteristics, sprinkler design factors, and level of maintenance), field topography, and 

ambient weather condition (mainly wind speed, but also temperature and relative 

humidity to a lesser extent). Results of existing studies suggest that accurate field-scale 

evaluation of sprinkler system irrigation uniformity requires plot-scale uniformity 

evaluations at more than one locations in the field (e.g., Zerihun et al., 2011). Each 

irrigation uniformity evaluation-plot can be considered as representative of a certain 

fraction of the irrigated field, a field-block sufficiently small, over which the system 

hydraulics and field topography can be realistically assumed spatially invariant. In the 

model described here, irrigation uniformity in a test-plot is evaluated with two indices: 

Christiansen’s uniformity coefficient, UCC (-), which is a good measure of spatially 

distributed sources of nonuniformity and the low-quarter distribution uniformity, DUlq (-), 

a more suitable measure of significant localized deviations in the collected precipitation 

depths from the average. The test-plot scale irrigation uniformity can then be scaled-up to 

field level through weighed averaging, taking into account the fractional area of each 

field-block relative to the total field area. In addition to the test-plot scale and field-scale 

uniformity indices, the model computes the average, minimum, and maximum collected 

depths for each test-plot and at the scale of an irrigated field. 

 Overall field-scale irrigation uniformity can be characterized based on data 

collected in an evaluation-plot, in which case the corresponding field-block is the entire 

irrigated field. Alternatively, it can be computed based on data collected in more than one 

test-plots suitably distributed over the irrigated field, each representing a fraction of the 

irrigate field. 
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3.5 One-dimensional optimization 

 

3.5.1 Problem formulation 

(1) During design computations the minimum sprinkler pressure head along a lateral, 

hs
k,min, can occur upstream of the distal sprinkler (section 3.2). Depending on the pressure 

head at the distal sprinkler, hs1
k, the minimum sprinkler pressure head along the lateral 

can be smaller than the minimum acceptable sprinkler pressure head specified at the 

input, hs
ma. In which case, hs1

k is computed iteratively such that the absolute difference 

between hs
k,min and hs

ma, f1 (Eq. 83), is reduced to within a specified error margin: 

 

)()(
,min 8311

ma

s

k

s

k

sf hhh −=  

 

(2) During design computations, the total head at each of the mainline off-take nodes, Hk 

(computed as a function of the total head at the distal mainline outlet, Hℓ
1), should at least 

be equal to the required total head at the respective off-take nodes. The satisfaction of this 

constraint makes sure that along each lateral hs
ma ≤ hs

k,min (condition 1 above). In the 

model described here this design requirement is formulated as follows: at the critical 

mainline outlet (section 3.2), the absolute difference between Hℓ
k(Hℓ

1) and Hℓ
k,r

, f2, 

should be less than a specified error margin: 

( ) )(
, 841

2

rkk

f HHH  −=  

 

(3) During simulation computations, the total head at the distal mainline outlet, Hℓ
1, is 

computed iteratively such that the absolute difference between the computed total 

dynamic head, Hs(Hℓ
1), and the total dynamic head specified at the input, Hs,  

(f3) is within a specified error margin: 

 

( ) )(851

3 ssf HHH −=   

 

As part of this computation, the distribution of total head and discharges (Qℓ
k
 and Hℓ

k) 

along the mainline outlets are determined.  
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(4) During simulation, the pressure head at the distal sprinkler, hs1
k, of each lateral is 

computed iteratively such that the absolute difference between the total head computed at 

the hydraulic characterization node of a lateral, Hℓ
k(hs1

k), and the total head at the 

corresponding mainline outlet computed in step 3 above, Hℓ
k, (f4) is reduced to within a 

specified error margin: 

  

( ) )(8614

kk

s

k

f HhH  −=  

 

Equations 82-85 summarize the sprinkler hydraulic problems that require iterative 

solution in order to reduce the absolute difference between computed values of the 

functions, ( ) ( ) ( ) ( ) k

s

k

s

kk

s

min,k

s hH,HH,HH,hh 1

11

1  , and their required values to within a 

specified error margin. The required values of the functions are either specified at the 

input  s

ma

s H,h  or computed a priori based on a different set of conditions  kr,k H,H  .  

 The numerical solution of each of the above hydraulic problems involves the 

minimization of an error function through one-dimensional optimization. In general near 

the optimal solution the quadratic function is a better behaved function, and is more 

amenable to numerical computation, than the absolute value function (Eqs. 83-86). 

Hence, using a quadratic error function, the error minimization problems listed above can 

be summarized in a more compact and formal optimization format:  

 

( )

  )(,

)()(min

87

2

dax

fxfx rf



−=
 

 

where f = the square of the error functions listed above (Eq. 83-86),  f = computed values 

of the functions, ( ) ( ) ( ) ( ) k

s

k

s

kk

s

min,k

s hH,HH,HH,hh 1

11

1  ;  fr = the required values of the 

functions, which is either specified at the input or computed a priori based on a different 

set of conditions  k

s

r,kma

s H,H,H,h  ; x = the independent variable of the optimization 

problem, which is hs1
k or Hℓ

1; [.] = a closed set (the elements of which are real numbers)  

over which the function, f, is defined; a and d = are the lower and upper limits, 

respectively, of the closed interval; and  = an element of the closed interval.  
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Potential feasible set:  For each design and simulation problem described above (Eqs. 83-

86), the potential feasible set is defined based on hydraulic considerations. Considering 

the design and simulation problem posed in Eqs. 83 and 86, the potential feasible set is 

the range of variation of pressure head for the distal sprinkler of the lateral, i.e., hs1
k  

[hs1
k,min, hs1

k,max]; where hs1
k,min and hs1

k,max = the lower and upper bounds, respectively, of 

the range of variation of the pressure head at the distal sprinkler of the lateral that obtains 

its supply from the kth mainline off-take node. As described in section 3.1, for each 

lateral hs1
k,min and hs1

k,max are either specified at the input, for the distal lateral, or 

computed as function of them for the laterals upstream. For the hydraulic design and 

simulation problem posed in Eqs. 83 and 84, the feasible set of Hℓ
1 is given as, [Hℓ

1,min, 

Hℓ
1,max], where Hℓ

1,min and Hℓ
1,max = the lower and upper bounds, respectively, of the 

range of variation of the total head at the distal mainline outlet. Note that the range 

[Hℓ
1,min, Hℓ

1,max] is determined during the hydraulic characterization computation as a 

function of the minimum and maximum pressure heads at the distal sprinkler of the distal 

lateral (section 3.1). Although these are the potential feasible sets for the hydrualic design 

and simulation problems formulated above (Eqs. 83-86), subsets of them are used in the  

numerical solution. This will be described in more detail in the description of the 

numerical algorithm used to solve the hydraulic simulation problems posed above.   

 

Unimodal property of error function (Eq. 87): Given a sprinkler system layout, land 

slope, pipe diameters, number and type of pipe appurtenances, hydraulic characteristics, 

and sprinkler characteristics; it can be noted from lateral and mainline hydraulics 

(sections 2.2 and 2.3) that increasing the values of the variables (hs1
k,Hℓ

1), will invariably 

lead to increased function values, hs
k,min(hs1

k), Hℓ
k(Hℓ

1), Hs(Hℓ
1) and Hℓk(hs1

k) and vice 

versa. The implication is that each of these functions can be described as strictly 

increasing functions of their respective variables. A corollary that stems from this 

property of the functions is that Eqs. 83-86 and their respective quadratic error functions 

(Eq. 87) are unimodal, provided the design/simulation requirement specified at the input 

is within the range of variation of the computed values of the functions.  

In order to illustrate this point, numerical examples are presented for the 

hs
k,min(hs1

k) and Hs(Hℓ
1) functions (Eqs. 83 and 85), Figures 11a-11f. The input data set 



 61 

used, in the simulation results summarized in Figures 11a-11f, is the same as that used in 

the simulation example presented in the companion document for a system with single-

line laterals layout configuration(Zerihun and Sanchez, 2012), except that the slope along 

a lateral is constant and is -0.04% for the upper half of the field and -0.06% for the lower 

half. Figure 11a shows that the longitudinal profile of the sprinkler pressure head along a 

lateral is an increasing function of the pressure head at the distal sprinkler of the lateral. 

For the same lateral, Figure 11b depicts the minimum sprinkler pressure head as a 

function of the pressure head at the distal sprinkler, which as well is a strictly increasing 

function. It can then be shown that if the minimum acceptable sprinkler pressure head is 

set at 30.0m, the corresponding error function (computed with Eq. 87) is unimodal with 

respect to the pressure head at the distal sprinkler (Figure 11c). Another numerical 

example summarized in Figure 11d shows that the energy line along the main is an 

increasing function of the total head at its distal outlet. In Figure 11e the total dynamic 

head at the inlet to the mainline is shown to be an increasing function of the total head at 

its distal outlet. Considering a pump supplying the required discharge with a total head of 

158.0m, it then follows that the corresponding error function computed with Eq. 87 is 

unimodal with respect to the total head at the distal mainline outlet. Similar examples can 

be developed to show the unimodal property of the other design and simulation problems 

listed above (Eqs. 84 and 86). Since unimodality property implies unique solution (in the 

current application, f =0), it is useful in verifying the validity of a numerical solution, 

described in subsequent section. 

 

3.5.2 Numerical solution 

 The optimization problem, Eq. 86, can be solved with a number of   

one-dimensional optimization techniques: methods that require derivatives, polynomial 

interpolation with interval reduction, or function evaluation and interval reduction based 

approaches (e.g., Avriel, 1976; Beightler et al., 1979; McCormick, 1983). Because exact 

evaluation of derivatives is not possible in the current application (Eqs. 82-85), methods 

that require derivatives are not used here. Although polynomial approximation based  

techniques can in theory be more efficient, in practice they can have numerical 
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Figure 11: (a) Sprinkler pressure head longitudinal profiles, along the lateral obtaining its supply from the kth mainline off-take node,                         

                  expressed as a function of the distal sprinkler pressure head, hs1
k; (b) Minimum sprinkler pressure head along the lateral, hs

k,min,  

                  as a function of the distal sprinkler pressure head; (c) Error function for minimum sprinkler pressure head (Eq. 83), f (hs1
k)=  

                  (hs
k,min(hs1

k) -hs
ma)2, as a function of the distal sprinkler pressure head; (d) Energy line along the main as a function of total head at  

                  the distal outlet, Hℓ
1; (e) Total dynamic head as a function of the total head at the distal outlet, Hℓ

1; (f) Error function for total  

                  dynamic head (Eq. 85), f (Hℓ
1)= (Hs(Hℓ

1)- Hs)
2, as a function of total head at the distal outlet
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instabilities (McCormick, 1983). A robust and simple technique based on function 

evaluation and solution interval reduction through successive iterations, known as the 

golden section technique, is implemented in the model described here. This technique is 

most suitable for minimizing unimodal functions, a property of the functions described 

above. The technique searches for the optimum solution to the problem posed in Eq. 87, 

[x*, f(x
*)], where x* is the function minimizer, in two steps: (1) Delineation of the closed 

interval, [a,d], that contains x* and (2) computation of the optimal solution [x*, f(x
*)]. A 

description of the golden section algorithm as implemented in the model described here is 

presented subsequently. 

At any given iteration (say the ith iteration), the golden section algorithm requires 

the function value be known at the interval bounds, f(a
i) and f(d

i), and at two additional 

points interior to the interval,  f(b
i) and f(c

i), where ai<bi<ci<di. During each iteration 

the function values at the interior points are used to check for solution convergence. If the 

convergence requirement is met then the solution is obtained. If not, one of two scenarios 

are used to advance the solution to the next iteration: (i) If a comparison of the function 

values f(b
i) and f(c

i) shows that f(b
i)  f(c

i) then the feasible space for the (k+1)th 

iteration, [ai+1,di+1], is reduced such that  

 

)(,, 88111 iiiiii bcandcdaa === +++  

 

and a new interior point, bi+1, within the (i+1)th interval is computed with and the 

function value, f(b
i+1), is calculated.  
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(ii) If, on the other hand, a comparison of  f(b
i) and f(c

i) shows that f(c
i) < f(b

i), then 

the feasible space for the (i+1)th iteration [ai+1,di+1] is reduced as follows:  

 

)(,, 90111 iiiiii cbandddba === +++  

 

and a new point ci+1 is computed with  
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and the function value f(c
i+1) is calculated. In both scenarios, function values at interior 

points are then used to check for solution convergence. If convergence is not reached, the 

steps described above are repeated resulting in further reductions in the feasible interval. 

 An important characteristics feature of the golden section algorithm is that at any 

given iteration, the placing of the interior points, bi and ci, within the closed interval 

[ai,di] is such that  
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If the ratios, σ1 and σ2, are true for the ith iteration; it can then be shown (based on Eqs. 

88-91) that they are also true for all subsequent iterations. If scenario i above holds then 

we have   
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on the other hand, if scenario ii holds then we have 
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Note that the ratio of the interval size at any given iteration, say the (i+1)th iteration, to 

that at the kth iteration is a constant, 0.618, which implies that the rate of convergence for 

the golden section algorithm is linear. Although it has a slower rate of convergence 

compared for instance to Newton’s method or polynomial interpolation techniques, the 

main advantage of the golden section technique is that it is a conceptually simple and a 

more robust algorithm. In addition, although four points are needed to execute a given 

iteration, at any one iteration only one new function evaluation is required.  
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Implementation of the golden section algorithm in the model described here is outlined 

subsequently. First a description of the interval delineation phase is presented, followed 

by optimal solution phase. 

 

(1) Delineation of the solution interval:  The potential feasible sets defined above, based 

on hydraulic considerations, can in principle be used as the solution space, [a,d], for the 

optimization problem posed in Eq. 87. However, solution efficiency can be enhanced if 

an interval delimitation step is used to define a smaller feasible set, [a,d], within 

[hs1
k,min,hs1

k,max] or [Hℓ
1,min, Hℓ

1,max] as the case may be. In the model described here an 

efficient algorithm based on an approach proposed by McCormick (1983) is used to 

define the feasible set in Eq. 87.   

 As described above, in order to execute a golden section iteration, four points 

need to be defined within the feasible set: the lower and upper bounds of the feasible set, 

[a,d], and two additional points, b and c, interior to the interval (such that a<b<c<d). 

Hence, the interval delineation phase is undertaken in at least four steps. The procedure 

for delineating the feasible interval is: 

 

(i) Set the feasible interval delineation step counting index, ψ = 1; and the lower bound  

    of the feasible set, x(ψ=1), to the lower limits of the variable range, xmin; where xmin = the  

    minimum value of the variable, given as:  

     (ia) For the design problem given in Eq. 83, set x1 = hs1
k = hs

ma and proceed  

 to step (ii); or 

     (ib) For the design problem defined in Eq. 84 set x1
 = Hℓ

1 = Hℓ
1,r and proceed to step  

 (ii); or 

     (ic) For the simulation problem given in Eq. 85, set x1 = Hℓ
1 =Hℓ

1,min and   

             proceed to step (ii); or  

(id) For the simulation problem given in Eq. 86, set x1 = hs1
k = hs1

k,min and proceed to  

       step (ii);  

 (ii) Evaluate the error function, f (x
ψ) Eq. 87, and proceed to step (iii); 

 (iii) Set ψ = ψ+1 and compute xψ, with the following function (McCormick, 1983):  
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       and proceed to step (iv). where  is a constant step size, the values of which can be  

       determined based on numerical experimentation. In the model described here values  

       of  = 0.2 for Eqs. 83 and 86 and = 0.1 for Eqs. 84 and 85 and 3 is given as: 
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       It can be shown that the definition of 3 in terms of 1 and 2 allows the interval        

       delineation computation to produce the two interior points along with the interval  

       bounds. In addition, the fact that Eq. 95 is an exponential function implies that it has  

       the mathematical property to be efficiently used over a wide range of feasible  

       interval sizes.   

(iv) Feasibility test: 

 (iva)  If xψ  xmax (where xmax = the upper limit of the feasible interval as determined  

          through hydraulic considerations, section 3.5.1; which could be hs1
k,max,  for  

          Eqs. 83 and 86 or Hℓ
1,max for Eqs. 84 and 85), then evaluate f (x

ψ) and proceed  

          to step (v); or  

  (ivb) If xmax < xψ and design problem (Eq. 83), then evaluate f (x
ψ) and proceed to  

           step (v) (cautionary note will be attached to output data); or      

   (ivc) If xmax < xψ and simulation/design problem (Eq. 84, 85, or 86), then xψ exceeds  

           the upper limit of the feasible space, end computation;       

(v)  Convergence test:       

 (va) If f (x
ψ) <f (x

(ψ-1)) or f (x
(ψ-1))<f (x

ψ) and ψ<4; then repeat steps (iii) and (iv);   

         or   

       (vb) If f (x
(ψ-1))<f (x

ψ) and 4 ψ, then the upper limit of the feasible set is computed                     

               and is given as d = xψ and from step (i) above the lower limit of the feasible   

               interval is a = x1; it can also be shown that when the interval delineation steps  

               are computed with Eq. 96, the interior points are given as b = x( ψ-2)  

               and c = x( ψ-2);   proceed to step 2 (computation of optimal solution); or 
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  (vc) If ψ = 2 and f(x
1) < f(x

ψ), then this could imply that the step size is sufficiently    

         large that the upper bound of the feasible set, d, is computed in a single step or it    

         may mean that the solution lies outside the feasible set. To ascertain which   

         of these scenarios are true proceed to step (vi); 

(vi)   Set the upper bound of the interval, d = x(ψ=2), and proceed to (vii) and initiate a  

         search for a new lower bound and the intermediate points;   

(vii)  Set ψ = ψ +1 and compute xψ in accord with: 

 

   )()( 983

 −= dx  

      and proceed to step (viiia); note that a smaller step size, , is used to compute xψ      

          with Eq. 98 than in Eq. 96;  

 (viii) Feasibility test: 

    (viiia) If xmin xψ then evaluate f (x
ψ) and proceed to step (ix); or  

    (viiib) If xψ <xmin and design problem (Eq. 83), then evaluate f (x
ψ) and proceed to  

               step (ix) (cautionary note will be attached to output data); or 

     (viiic) If xψ<xmin and design/simulation problem (Eq. 84, 85, or 86), then xψ is  

                outside the feasible space, end computation;            

(ix)  Convergence test:  

  (ixa) If f (x
ψ)<f (x

(ψ-1)) or f (x
(ψ-1))< f (x

ψ) and ψ<5; then repeat steps (vii)  

           and (viii) above; or     

        (ixb) If f (x
(ψ-1))<f (x

ψ) and 5 ψ, then the lower limit of the feasible set is     

      computed and is given as a = xψ and from step (vi) above the upper limit of the  

                 feasible set is d = x(ψ=2); it can also be shown that when the interval delineation  

                 steps are computed with Eq. 98, the interior points are given as b = x(ψ-1)  

                 and c = x(ψ-2); and then proceed to step 2 (computation of optimal solution).  

(2) Computation of optimal solution     

      (i)  Set iteration index, i = 1, and ai = a, bi = b, ci =c, and di =d and proceed to step ii;         

      (ii) Convergence test (letting )b()b( i

f

i  =  and )c()c( i

f

i  = ):  

            (iia) If 10-5 < (bi) and 10-5< (ci) then proceed to step (iii); or 

  (iib) If (bi)  10-5 and 10-5< (ci)  (or (bi)  10-5 and (ci)  10-5,  

                    but (bi)  (ci), then proceed to step (vi); or  
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            (iic) If (ci) 10-5 and 10-5< (bi)  (or (bi)  10-5 and (ci) 10-5,  

                    but (ci) (bi)), then proceed to step (vii); 

     (iii) Function comparisons for interval reduction:   

            (iiia) If f(c
i) f(b

i) then proceed to step (iv); or   

            (iiib) If f(b
i)< f(c

i) then proceed to step (v). 

     (iv) Define a new interval as follows:     

 ( ) )(,,, 99111

2

1111 +++++++ +−==== iiiiiiiiii aadcandcbddba         

            and compute f (c
i+1). Set i = i+1 and proceed to step (ii) above; 

      (v) Define a new interval as follows:        

            ( ) )(,,, 100111

1

1111 +++++++ +−==== iiiiiiiiii aadbandbccdaa   

            and compute f(b
i+1). Set i = i+1 and proceed to step (b) above;  

      (vi) The computation has converged the optimal point is [bi,f(b
i)]; 

     (vii) The computation has converged and the optimum point is [ci,f(c
i)]; 

 

In the preceding sections, the computational modes (system hydraulic characterization, 

design, and simulation) of the hydraulic model (SprinklerModel) developed in this study 

are described. In addition, a one-dimensional optimization algorithm implemented in the 

model for solving sprinkler systems hydraulic design and simulation problems is 

presented. The components of the sprinkler model (i.e., the program modules) and their 

functions as well as the steps for installing and running the model are described in 

subsequent section.   

 

Chapter 4. Model functionality, installation, and running    

 

4.1 Model components and description 

 The sprinkler model described here (SprinklerModel) is a C++ program 

developed based on the object oriented programming approach. The model has ten 

classes (user defined data types and member functions): CSprinklerModel, CInput, 

CComputeModesOptimization, CCalculationLateral, CCalculationMainSLL,  
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CCalculationMainDLL, CCalculationInterpolation, CCalculationHydraulic, 

CIrrigationUniformity, and COutput. Each of these classes consists of a pair of files: a 

header file for the declaration of member functions with the extension (.h) and an 

implementation file with extension (.cpp). The header files are those in which the 

member functions and variables of a class are declared and their attributes defined: 

CSprinklerModel.h, CInput.h, CComputeModesOptimization.h, CCalculationLateral.h, 

CCalculationMainSLL.h, CCalculationMainDLL.h, CCalculationInterpolation.h, 

CCalculationHydraulic.h, CIrrigationUniformity.h, and COutput.h. The implementation 

files are those in which functions declared in the header files are implemented: 

CSprinklerModel.cpp, CInput.cpp, ComputeModesOptimization.cpp, 

CCalculationLateral.cpp, CCalculationMainSLL.cpp, CCalculationMainDLL.cpp, 

CCalculationInterpolation.cpp, CCalculationHydraulic.cpp, CIrrigationUniformity.cpp, 

and COutput.cpp. Figure 12 shows the interrelationship between the different classes that 

the SprinklerModel is composed of. As can be noted from Figure 12, the file SSDSM.cpp 

(Sprinkler System Design and Simulation Model) contains the main function of the 

program. 

 The class CSprinklerModel has one member function with a public scope called 

Run, which is invoked by a function call from the SSDSM.cpp file. This class has four 

member functions that are private to the class: SystemCharacterization, SystemDesign, 

SystemSimulation, and FieldEvaluation. The class CSprinklerModel is one in which 

variables with global scope are declared and function calls to the member functions of the 

CInput, CComputeModesOptimization, CIrrigationUniformity, and COutput classes are 

made. The CInput class has several member functions declared in the header file, 

CInput.h. The functions in the CInput class create, the folders in which input and output 

data files are stored and, read input data from these files during run time (sections 4.2.2 

and 4.3). They also copy the input data file templates (LateralInputDataTableDW.inp, 

MainInputDataTableDW.inp, LateralInputDataTableHW.inp and A SprinklerModel 

project consists of all the input and output data files of a given field-scale solid set 

sprinkler system for which hydraulic characterization, design, and/or simulation 

computations are to be conducted. The CComputeModesOptimization class has  

several member functions that have both private and public scope. The numerical
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 SSDSM: Sprinkler system design 

      and  

        simulation model

CSprinklerModel.h

CSprinklerModel.cpp
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CInput.cpp

CComputeModesOptimization.h

CComputeModesOptimization.cpp
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CIrrigationUniformity.cpp
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CCalculationLateral.cpp
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CInput class
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CIrrigationUniformity class

CCalculationInterpolation.h
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COutput.h

COutput.cpp
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          Figure 12. SprinklerModel components
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solution of hydraulic design and simulation problems involve one-dimensional 

optimization, in which the value of the system variables are computed such that the 

design and simulation requirements specified at the input are satisfied (sections 3.2 and 

3.3). The functions for one-dimensional optimization are implemented in this class. In 

addition, the member functions of those classes where numerical computations take place 

(CCalculationLateral, CCalculationMainSLL, CCalculationMainDLL, 

CCalculationInterpolation, and CIrrigationUniformity) are accessed through member 

functions of the CComputeModesOptimization class (Figure 12). 

 The CCalculationLateral class has member functions, declared in the header file, 

that have both public scope and are private to the class. The functions that iteratively 

solve the basic hydraulic equations of laterals (section 2.2), when the model is run under 

the system design, system simulation, or system characterization options are included in 

this class.  

 The CCalculationMainSLL class contains the member functions that iteratively 

solve the hydraulic equations of a sprinkler mainline with single-line laterals: computing 

the distribution of specific energy and outlet discharges and associated total heads along 

the main (section 2.3.1).  

 The CCalculationMainDLL has member functions with both public and private 

scope. These functions are used to compute the longitudinal distribution of specific 

energy and outlet discharges and associated total heads along a mainline with  

double-line of laterals (section 2.3.2).    

 The CCalculationInterpolation class has several member functions with both 

private and public scope. The functions in this class are used to compute the parameter 

estimates of the cubic spline interpolants that relate total head and discharge for each 

mainline outlet (section 2.3). 

 The CCalculationHydraulic class has several member functions declared in its 

header file CCalculationHydraulic.h. The member function of the 

CCalculationHydraulic class perform basic hydraulic computations, including the 

calculation of friction head losses in pipe sections either with the Darcy-Weisbach or 

Hazen-Williams equation, and the local energy losses associated with various pipe 

fittings and appurtenances. The functions in this class are accessed through member 
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functions in the CCalculationLateral, CCalculationMainSLL, and CCalculationMainDLL 

classes (Figure 12). 

 The CIrrigationUniformity class has member functions that have both pubic and 

private scope. These member functions compute evaluation-plot scale and field-scale  

irrigation uniformity indices. They also compute the maximum, minimum, and average 

precipitation depths for each uniformity evaluation plot and at the field-scale.  

 The COutput class has several member functions both with public and private 

scope. These member functions save output data files (section 4.2.3) into appropriate 

subfolders created during runtime by the program (section 4.3). Functions in this class are 

accessed through member function in CSprinklerModel class (Figure 12).  

 

4.2 Model functionality: computational modes and input/output 

 

4.2.1 Computational modes 

 The SprinklerModel described here has four computational options that are 

functional: System hydraulic characterization, design, simulation, and field evaluation. 

Given the hydraulic, geometric, and topographic characteristics of a sprinkler system, the 

hydraulic characterization computations define the system hydraulic characteristics. 

Although results of the system hydraulic characterization computations are useful in 

pump selection or evaluation; its main significance is in generating the necessary data 

sets for subsequent computations: hydraulic deign and simulation. 

With the design computational mode, the design sprinkler pressure head (obtained 

from manufacturer’s catalogue) along with the minimum acceptable sprinkle pressure 

head are specified at the input. The model then computes the field-wide distribution of 

sprinkler pressure head and discharges and the corresponding total dynamic head such 

that the pressure head at the critical sprinkler is sufficiently close to the acceptable 

minimum. If, however, the system configuration is such that the maximum sprinkler 

pressure head is an acceptably high, the design can be revised and refined through 

repeated computations with different lateral/mainline diameters, sprinklers, and spacing 

combinations.  
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During simulation computations, the model calculates the spatial distribution of sprinkler 

discharges and pressure heads over the irrigated field, given the total dynamic head at the 

system inlet. Because the spatial distribution of sprinkler pressure heads and discharges 

are good indicators of field-scale irrigation uniformity, the hydraulic simulation 

functionality of the model described here can be considered as a useful tool in evaluating 

the potential irrigation uniformity of an existing system. Detailed description of the 

computational algorithms as related to these computational modes is presented in sections 

3.2-3.5.  

 With the field evaluation mode, the model computes irrigation uniformity indices, 

as well as maximum, minimum, and average precipitation depths at the scale of a test-

plot and an irrigated field based on field measured data. 

 

4.2.2 Input data files 

 The SprinklerModel developed in the current study obtains its input data from 

space delimited text files. The model has two types of input data files: the project 

configuration file (SprinklerModelConfiguration.Inp) and the files that contain the 

hydraulic, geometric, and topographic input data and irrigation uniformity field 

evaluation data. The project configuration file contains input data on the selection of: 

computational modes, lateral configuration, and friction equation options for the current 

project and is placed directly under the Projects subfolder (section 4.3). Valid numerical 

inputs for computational mode are 1(system hydraulic characterization), 2 (system 

design), 3 (system simulation), and 5(Field evaluation) computations. Option 4 is skipped 

in the current version of the model, because it is reserved for the parameter estimation 

functionality, which is not yet functional; but will be included in subsequent versions. 

Lateral configuration mode is set to 1 for a sprinkler system with single-line laterals or it 

is set to 2 for a system with double-line laterals. Friction equation option is set to 1 for 

Darcy-Weisbach equation and is set to 2 for Hazen-Williams equation.  

When the model is run in modes 1, 2, and 3, one of two pairs of files (placed under the 

current project folder, section 4.2.4) are used for specifying the hydraulic input data for 

any given project. For projects in which friction head losses are computed with the 

Darcy-Weisbach equation, the hydraulic input data files are: 
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LateralInputDataTableDW.Inp (for laterals) and MainInputDataTableDW.Inp (for the 

mainline). For projects in which friction is computed with the Hazen-Williams equation 

the input data files are: LateralInputDataTableHW.Inp (for laterals) and 

MainInputDataTableHW.Inp (for the mainline). These files can be found in the 

InputDataTemplate directory subfolder and also in the Projects subfolder (section 4.2.4 

and 4.3). 

 The hydraulic input data types and the volume of the input data file vary 

depending on the computational modes, the friction formula used, and the lateral 

configuration option. It also depends on whether the input data file is for the mainline or 

for a lateral as well as on the specific hydraulic, geometric, and topographic conditions of 

the sprinkler system being modeled. Each of the hydraulic, geometric, and topographic  

input data files has two data types. The first set of input data (nontabular data) consists of 

the number of pipe sections along laterals/main, number of sprinklers/laterals, system 

hydraulic characterization/ design/ simulation constraints or requirements. For instance, 

the minimum acceptable and the design sprinkler pressure heads along with the 

maximum permissible velocity are specified in this section of the lateral input data file, if 

the system design computational option is selected. On the other hand, if the model is to 

be run under the system simulation option, then the total dynamic head at the mainline 

inlet should be specified in this segment of the mainline input data file. The pressure head 

range for the distal sprinkler need to be specified (in the mainline input data file) for use 

in the hydraulic characterization computation. If friction is computed with the Darcy-

Weisbach equation water temperature should be specified in this section of the input data 

files.  

The second part of a hydraulic input data file has a tabular format, in which each 

row represents the hydraulic, geometric, and topographic characteristics of the mainline 

or lateral at a computational node. The tabular format of the hydraulic input data provides 

maximum flexibility in taking into account spatial variations in these factors along a 

lateral (between laterals) or along the mainline. The columns represent such data items 

as: distance of the respective nodes from the inlet of the pipe (mainline or lateral), nodal 

elevations, pipe (which could be main, lateral, or sprinkler riser) diameters, friction 

coefficients, sprinkler discharge coefficients for laterals, and local head loss coefficients 
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for pipe appurtenances. In addition, the tabular section of the mainline hydraulic input 

data file contains two sets of data columns that define the topographic, geometric, and 

hydraulic characteristics of each mainline outlet; one for each set of laterals on either side 

of the mainline (Figure 4). Note that if the sprinkler system has only a single-line of 

laterals, then the data columns for the second set of mainline outlets are set to zero. 

Because of space limitations the names of the data columns in both the lateral and the 

mainline hydraulic input data files are abbreviated, but a definition of the variable name 

for each data column and allowable data range is provided in the MetaData.text file 

within the InputDataTemplate or Projects subfolder (section 4.2.4 and 4.3).  

When the model is run in the FieldEvaluation mode, the input data (collected 

through field measurements or representing a hypothetical irrigation scenario) is provided 

though a space delimited text file: FieldEvaluationInputDataTable.Inp. This input data 

file has both tabular and nontabular data. The first data segment in the 

FieldEvaluationInputDataTable.Inp file (a nontabular input) consists of data items that 

are common to the entire irrigated field, such as area of the irrigated field, number of 

uniformity evaluation plots, number of rain gage rows and columns in an evaluation-plot, 

as well as dimensions of an evaluation-plot. This is then followed by data segments for 

each uniformity evaluation plot in the field. These data sets contain precipitation depths 

collected within each uniformity evaluation-plot (in a tabular format) and a nontabular 

data related to ambient weather condition during an irrigation evaluation and associated 

field-block area. A metadata file (MetaData.text) provided in the InputDataTemplate or 

Projects subfolder (section 4.2.4 and 4.3) describe the file format and valid ranges for 

each data type. 

 

4.2.3 Output data files 

 The model produces various types of output data following system 

characterization, design, simulation, and field evaluation computations. Model outputs 

for the mainline and each of the laterals following system characterization, design, and 

simulation computations are saved in space delimited text files and stored in separate 

subfolders created by the program during runtime (section 4.3). For each lateral there are 

three types of output data files (LateralOutputDataTableDW.Out or 
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LateralOutputDataTableHW.Out, ElevationHglEgl.Out, and 

HydraulicCharacteristics.Out). Similarly, there are three types of output data files for the  

 

mainline (MainOutputDataTableDW.Out or MainOutputDataTableHW.Out, 

ElevationHglEgl.Out, and HydraulicCharacteristics.Out).  

 For each lateral the LateralOutputDataTableDW.Out or 

LateralOutputDataTableHW.Out file contains a summary of the hydraulic input data set 

as well as such output data items as the longitudinal distribution of sprinkler discharge 

and pressure head, lateral discharge and pressure head, velocity head, friction head loss, 

and local head losses. The MainOutputDataTableDW.Out or 

MainOutputDataTableHW.Out file contains a similar set of output data for the mainline. 

For the mainline and each of the laterals, the data on the longitudinal distribution of the 

specific energy and its components is stored in the ElevationHglEgl.Out file. The file 

HydraulicCharacteristics.Out contains data on the hydraulic characteristics of each 

lateral and the main (i.e., the Qℓ
k-Hℓ

k table for each lateral and the Qs-Hs table for the 

mainline).  

 Each project (involving hydraulic computational modes) has an output summary 

subfolder, named OutputSummary under the current project folder (section 4.3). Various 

types of output data, for all the laterals and the main, are aggregated and saved in text 

files that are stored in the OutputSummary subfolder. These files are:  

 

(1) The hydraulic summary file (HydraulicSummary.Out) contains a comprehensive 

summary of the system hydraulic data, which is an aggregation of the contents of the 

MainOutputDataTable.Out file and all of the LateralOutputDataTable.Out files;  

 

(2)  The SpecificEnergyDistributionSummary.Out file contains a summary of the specific 

energy distribution data along each lateral and the mainline;  

 

(3) The SystemHydraulicCharacteristics.Out file contains a summary of the hydraulic 

characteristics of each of the laterals and the main;  
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(4) The SprinklerQdistribution.Out file contains a summary of the spatial distribution of 

sprinkler discharges over the irrigated field; and 

 

(5) The SprinklerHdistribution.Out file contains a summary of the spatial distribution of 

sprinkler pressure heads over the irrigated field.  

 

The data sets in the files SprinklerQdistribution.Out and SprinklerHdistribution.Out are 

presented in a two-dimensional tabular format with values of variables shown at grid 

points (sprinkler locations), defined by distances from the system inlet along the mainline 

and in a direction normal to the mainline. A second version of these output data files 

(SprinklerQdistributionContour.Out and SprinklerHdistributionContour.Out), also stored 

in the OutputSummary folder, are formatted in such a way that the data can readily be 

imported into a contouring software (e.g., SURFER, Golden Software, Inc.) and the 

spatial distribution of the pressure head and discharge over the irrigated field can be 

shown as contours. The data sets in these files are arranged in three columns, the first two 

columns contain spatial coordinates of the sprinkle locations referenced from system inlet 

along the mainline and in a direction normal to the mainline and the third column consists 

of either the sprinkler discharges or sprinkler pressure heads. The output data file for the 

FieldEvaluation computational mode is FieldEvaluationOutputDataTable.Out. It 

contains a summary of the irrigation uniformity indices, maximum, minimum, and 

average collected precipitation depths at the field-scale as well as at the scale of 

uniformity evaluation-plots. 

 

4.2.4  Input/output data files directory structure  

 The SprinklerModel has a specific input/output data files directory structure, 

which is created by the model when it is run from a folder for the first time. If the model 

is run from a directory folder for the first time, the subfolder in which the executable file 

of the SprinklerModel (SprinklerModel.exe) is placed should also contain a subfolder 

with the name InputDataTemplate. Figures 13a and 13b depicts the directory structure 

and files under the InputDataTemplate folder. Note that this folder itself is not used for  
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(a)

(b)

InputDataTemplate

SystemCharacterization SystemDesign SystemSimulation ParameterEstimation FieldEvaluation
MetaData.txt

ProjectConfigurationFile.Inp

InputDataTemplate

SystemCharacterization/SystemDesign/SystemSimulation

SignleLineLateral DoubleLineLateral

MetaData.txt

LateralInputDataTableDW.Inp

MainInputDataTableDW.Inp

LateralInputDataTableHW.Inp

MainInputDataTableHW.Inp

MetaData.txt

LateralInputDataTableDW.Inp

MainInputDataTableDW.Inp

LateralInputDataTableHW.Inp

MainInputDataTableHW.Inp

FieldEvaluation

MetaData.txt

FieldEvaluationInputDataTable.Inp

 

 

Figure 13 (a) Files and computational mode subfolders under the InputDataTemplate  

     directory folder and (b) Subfolders and input data files for projects involving    

     hydraulic computational modes with single-line of laterals (SingleLineLateral)  

     or double-line of laterals (DoubleLineLateral) and for projects involving    

      field evaluation computation  

 

storing input/output data files of actual projects during program runtime. Instead, when 

the SprinklerModel is run for the first time from a subfolder, it uses the  

InputDataTemplate directory structure as the template based on which it creates an 

input/output data file directory structure, named as Projects (Figure 14a-14c). A 

description of the procedure whereby the model creates this directory structure will be 

presented in section 4.3.Prior to that, however, the structure and contents of the 

InputDataTemplate directory folder will be discussed in some detail. The 

InputDataTemplate folder contains two text file (MetaData.txt and 

SprinklerModelConfiguration.Inp) and five subfolders (SystemCharacterization,  

SystemSimulation, SystemDesign, ParameterEstimation, and FieldEvaluation), 
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           (a)

            (b)

            (c)
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Figure 14 (a) Files and computational mode subfolders under the Projects directory  

                folder; (b) Subfolders, input data files, and metadata files for projects involving    

      hydraulic computational modes with single-line laterals (SingleLineLateral)  

                or double-line laterals (DoubleLineLateral) and for projects involving the  

                field evaluation computational mode; and (c) Subfolders for saving the  

                input/output data files for the mainline and for each lateral and the  

     output summary data files under the current project folder (considering an  

     example in which the computational mode is SystemDesign, the lateral   

      configuration option is SingleLineLaterals, the friction calculation option is    

       Darcy-Weisbach and the project name is SprinklerDesignA, hence the current     

                project folder name is SprinklerDesignA_DW) 
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Figures 13a and 13b. The file MetaData.txt provides a description of each of the 

subfolders in the InputDataTemplate folder and the contents of the 

SprinklerModelConfiguration.Inp file (section 4.2.2). Each of the subfolders in the 

InputDataTemplate folder represents one of the five computational modes of the 

sprinkler model (SprinklerModel): sprinkler system characterization, design, simulation, 

parameter estimation, and field evaluation options. In the current version of the program 

only the sprinkler system characterization, design, simulation, and field evaluation modes 

are functional. Future versions of the model will include a parameter estimation 

functionality as well, hence parameter estimation will not be discussed further in this 

report. 

Under each of the SystemCharacterization, SystemDesign, and SystemSimulation, 

directory folders there are two subfolders, namely: DoubleLineLaterals and 

SingleLineLaterals (Figure 13b). Each of these subfolders contains five text files: 

hydraulic input data files for laterals and the mainline (LateralInputDataTableDW.Inp, 

MainInputDataTableDW.Inp, LateralInputDataTableHW.Inp, and 

MainInputDataTableHW.Inp) and a file describing the contents and data formats, as well 

as the variable names and ranges of the hydraulic input data files (MetaData.txt). A 

description of the hydraulic input data files is given in section 4.2.2. These files contain 

default hydraulic input data with which the model can be run. The hydraulic input data 

files and the project configuration file may, however, need to be modified reflecting the 

specifics of the project (in terms of hydraulic, geometric, and topographic data and 

project configuration) for which computations are to be conducted. The FieldEvaluation 

directory folder contains an input data file, FieldEvaluationInputDataTable.Inp (section 

4.2.2), and a text file (MetaData.txt) describing the input data file format and the types 

and ranges of the data items in the input data file. The following section outlines the step 

for installing the program, editing input data, and running the program.  

   

4.3 Installation and running of SprinklerModel 

 The following is a description of the steps to be followed to install and run the 

program, SprinklerModel: 
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1. Program installation: First create a destination directory folder, in the drive where the 

model is to be placed, and then simply copy the executable file (SprinklerModel.exe)  

along with the InputDataTemplate subfolder from the source subfolder into the 

destination subfolder. 

  

2.  Running the SprinklerModel:  To run the program simply click on the 

SprinklerModel.exe file, the model will then execute the following series of steps: 

 

3. Check for the Projects subfolder: when the SprinklerModel is run, it first checks if  

there is a subfolder with the name Projects within the program folder (the folder in        

which SprinklerModel.exe is). If there is not one already (if for example the program        

is run for the first time from the current folder), the program creates the folder Projects 

and subfolders under it with the same structure as the InputDataTemplate folder (Figures 

13 and 14). The program also copies the input data file templates and the metadata files 

from the InputDataTemplate directory into an appropriate subfolders within the Projects 

folder. If the folder Projects already exists in the current folder, the program skips this 

step. 

 

4. Specify project name: The program then opens a window in which the user is required 

to specify the name of the current project. Prior to the specification of the project name 

the project configuration file, SprinklerModelConfiguration.Inp, in the Projects folder      

may need to be modified and set to applicable options for the current project (section 

4.2.2). In addition, the input data files may need to be modified to represent actual 

conditions of the field for which computations are to be conducted. The default hydraulic 

input data files (section 4.2.2) are in the subfolder SingleLineLateral or 

DoubleLineLateral, as the case may be, and the input data file for field evaluation 

computational mode is in the FieldEvaluation subfolder (Figure 14b). Hence, before a 

project name is specified the input data files can be opened in Microsoft Excel program, 

edited as necessary, and then saved as space delimited text files in the same folder. When 

data editing is not extensive, basic text editor such as Notepad can also be used. The 

program provides a second opportunity to edit the input data after the project name is 
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specified, current project subfolders are created, and input data files are copied into those 

folders (steps 6 and 7). However, considering a hydraulic computational mode, if all the 

laterals have the same hydraulic, geometric, and topographic properties, editing the input 

data at this step involves minimal effort, hence preferable. Following this steps the 

current project name can be specified, which leads to step 5;  

 

5. Create subdirectory for the current project: Based on the project configuration inputs  

(specified in the SprinklerModelConfiguration.Inp file), the program first checks if the 

specified project already exists in an applicable subfolder (Figures 14a and 14b). If so, it 

will skip this step but provides the user with the option to edit the input data files; 

following which the program proceeds to step 9, Computation. On the other hand, if the 

current project is new the program then creates a subdirectory for it directly under an 

applicable subfolder. For instance, if the directory path to SprinklerModel.exe is 

“C:\SprinklerModel\”, the computational mode is system design, the lateral configuration  

option is SingleLineLaterals, the friction calculation formula used is Darcy-Weisbach, 

and the name of the project is SprinklerDesignA (Figure 14c); then the directory path to 

the project SprinklerDesignA will be: “C:\ SprinklerModel\Projects\ SystemDesign\ 

SingleLineLaterals\SprinklerDesignA_DW\”. Note that the substring “_DW” is appended  

to the specified project name to indicate that the friction calculation option used in the  

project is Darcy-Weisbach. On the other hand, if the friction calculation formula was 

Hazen-Williams, then the substring “_HW” would have been appended to the specified 

project name. The program then proceeds to step 6. On the other hand, if the 

computational mode selected is field evaluation, the model then creates the current 

project subfolder directly under the folder FieldEvaluation. As can be noted from Figure 

14b, the project name specified at the input is automatically appended with the substring 

“_FE” to indicate that the project is field evaluation. The program then copies  the input 

data file (FieldEvaluationInputDataTable.Inp) from the FieldEvaluation folder into the 

current project folder. Here the program  provides an opportunity to edit the data. Note 

that unlike the hydraulic computational modes, in the field evaluation mode no subfolder 

is created under the current project folder. In stead the input and output data are placed  
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directly under the current projects folder. Hence, steps 6-8 are skipped and model 

proceeds to computation, step 9.   

 

6. Create subfolder for the mainline (not applicable to the FieldEvaluation mode): The 

program then creates a subfolder for the mainline (main) under the current project folder, 

SprinklerDesignA_DW (step 5 above). It also copies the mainline hydraulic input data file 

from the source folder (SingleLineLateral, Figure 14c) into the folder main within the 

current project folder. Note that depending on the friction calculation option specified in 

the project configuration file, SprinklerModelConfiguration.Inp, the mainline hydraulic 

input data file is either MainInputDataTableDW.Inp or MainInputDataTableHW.Inp 

(section 4.2.2). 

 

7.  Create subfolder for each lateral (not applicable to the FieldEvaluation mode): The  

program obtains the number of laterals in the system from the mainline hydraulic input 

data file (MainInputDataTableDW.Inp or MainInputDataTableHW.Inp) and then creates 

the subfolders for each lateral under the current project folder (e.g., 

SprinklerDesignA_DW). As can be seen from Figure 14c, the subfolders for the laterals 

are named by appending an underscore and a numeral to the term “Lateral” (e.g., 

Lateral_1, Lateral_2, …Lateral_k). The numerals identify the laterals in the sprinkler 

system. Note that in the program, the laterals are numbered sequentially starting from the 

upstream end lateral and ending at the downstream end lateral. The program also copies 

the lateral hydraulic input data files (LateralInputDataTableDW.Inp or 

LateralInputDataTableHW.Inp) from an applicable source subfolder (e.g., 

SingleLineLateral) into the subfolders for the respective laterals (Figure 14c). Following 

this steps the program provides the user with an opportunity to edit the hydraulic, 

geometric, and topographic input data for the mainline as well as the laterals. If the input 

data is variable from one lateral to another, then this is the step where lateral hydraulic 

input data file for the pertinent laterals should be edited. The model allows variable 

inputs for slopes, pipe diameters, friction coefficients, the number and type of pipe 

appurtenances, and sprinkler characteristics along a lateral or from one lateral to another. 
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In addition, the length of laterals can be varied following irregularities in the field 

boundary, if any.    

 

8. Create OuputSummary subfolder (not applicable to the FieldEvaluation mode):  

Under the current project folder (e.g., SprinklerDesignA_DW), the program creates 

another subfolder for output summary files, with the name OutputSummary (Figure 14c). 

In OutputSummary subfolder, a number of output data files containing a summary of the 

output data sets are saved following computations (section 4.2.3).    

 

9. Computation: The program then proceeds with numerical computations, which could 

be done in one of four modes: hydraulic characterization, design, simulation, and field 

evaluation (sections 3.1-3.4). 

 

10. Output: Following successful numerical computations, output data files (described in 

section 4.2.3) are saved in the relevant subfolders. For hydraulic computations, the output 

data files for the mainline (ElevationHglEgl.Out and HydraulicCharacteristics.Out, along 

with MainOutputDataTableDW.Out or MainOutputDataTableHW.Out) are saved in the 

subfolder Main (Figure 14c). The output data files of each lateral (ElevationHglEgl.Out, 

HydraulicCharacteristics.Out, and LateralOutputDataTableDW.Out or 

LateralOutputDataTableHW.Out ) are saved in the subfolders for the respective laterals. 

A number of files that contain summaries of various hydraulic output data (section 4.2.3) 

are saved in the OutputSummary subfolder. For field evaluation computations the output 

data file (FieldEvaluationOutputDataTable.Out) is saved under the current project folder, 

which comes directly under the FieldEvaluation directory folder (Figure 14b).  

 

4.4 Model input and runtime error detection functionality  

 The SprinklerModel model developed in this study has functionalities for 

detecting various kinds of data input and runtime errors. Data input errors that can be 

detected by the model are invalid numeric format, data item that is out of range, and 

inconsistencies in input data items. The model generates an error message describing the 

nature of the error and the location of the data item in the input data file, suggesting that 
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the data needs to be edited. During runtime intermediate model outputs could be 

infeasible or violate a physical constraint, in which case the model prints an error 

message on the screen describing the nature of the error and suggested solutions (often  

required adjustments in input data) to obtain results.   

 

Chapter 5. Model limitations 

 Given the layout of a field-scale solid set sprinkler system, the diameters of the 

laterals and the mainline, nodal elevations, the friction factor, the locations, and types of 

pipe fittings/appurtenances along with their associated local head loss coefficients, the 

model in it is current state of development can compute the spatial distribution of 

sprinkler discharges and pressure heads over an irregularly shaped field assuming a well 

maintained system with negligible leakage losses. Based on these data the uniformity of 

sprinkler discharges as affected by system hydraulics can be computed. Although the 

model provides a significant level of flexibility in terms of allowing spatially variable 

lateral slope, pipe diameter, sprinkler head-discharge characteristics, hydraulic resistance 

characteristic of pipe sections, and that it takes into account local head losses along the 

lateral and the mainline; there are some significant limitations that need to be overcome 

through further development before the model can be ready for use in field-scale solid set 

sprinkler irrigation system design, management, and evaluation. The following are the 

main limitations of the model: (1) model cannot evaluate field-scale irrigation 

performance, (2) limited flexibility in terms of the location of the sprinkler system inlet 

along the mainline, (3) model lacks a user friendly interface, and (4) limited field 

evaluation of the hydraulic model.  

     

(1) Limitations related to irrigation performance computation: the sprinkler hydraulic 

model described here needs to be further developed in order to have the capability to 

compute field-scale sprinkler irrigation system performance: uniformity, adequacy, and 

efficiency. In order for the hydraulic model to be able to quantify field-scale irrigation 

performance it needs to be augmented with two additional modeling functionalities:  
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(1a) Modeling precipitation distribution pattern around a sprinkler taking into account 

wind drift and spray evaporation losses: a physically based modeling functionality that 

is capable of simulating the distribution pattern of precipitation around a sprinkler taking 

into account sprinkler design factors, nozzle pressure head, and wind speed and direction 

(e.g., Playan et al., 2009) should be developed and coupled with the hydraulic model. 

Currently the authors are working on the development of a physics based droplet 

dynamics model capable of simulating the pattern of precipitation about a sprinkler with 

support from the USBR. Given the field layout, the output of such a model can be used 

to determine the number of overlapping sprinklers contributing to any given point in the 

irrigated field and the depth contributed by each sprinkler to that point (e.g., Martin et 

al., 2007). The total application depth can then be computed as the sum total of the 

contribution of each sprinkler reaching that point. Empirical approaches can be used to 

estimate wind drift and spray evaporation losses (Playan et al., 2009).  

 

(1b)  Soil water flow functionality: a well designed and maintained system should 

generally apply irrigation water at a rate lower than the steady state intake rate of the soil 

to prevent surface runoff. In any case, considering the complexity of the interaction of 

spatially varying precipitation rates, soil intake characteristics, and the overland flow 

hydraulics; there is no simple and reliable way of determining the amount of field-scale 

surface runoff from a sprinkler irrigated field. Hence, it is a design imperative to limit 

sprinkler application rates to a level lower than the soil steady state intake rate. 

Infiltration of irrigation applied water into the soil and its subsequent flow and 

redistribution through the soil profile can be modeled with a one-dimensional soil water 

flow model (e.g., HYDRUS-1D, Simunek et al., 2009). Coupling a subsurface flow 

model with the sprinkler hydraulic model provides a capability for matching sprinkler 

application rates with soil intake characteristics during system design. It also provides 

the functionality for computing the disposition of irrigation applied soil water with 

respect to crop availability at any given time subsequent to an irrigation event, based on 

which irrigation performance can be computed.  
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(2) Limited flexibilty in terms the location of the sprinkler system inlet along the 

mainline: Currently the model is designed to simulate the hydraulics of a solid set 

sprinkler network in which the mainline inlet is located at the edge of the irrigated field. 

Slight modification of current model can increase model flexibility in this regard.   

 

(3) Lack of a well developed user interface: Currently the hydraulic model uses space 

delimited text files prepared with such programs as MS Excel, Notepad (or other 

applications with the same functionality) for data input. Output data is also saved by the 

program in space delimited text files and can be accessed only using application software 

listed above. However, a user friendly interface for editing inputs and presentation of 

output can be developed and integrated with the simulation engine, resulting in a 

standalone program that can be run in machines without the above listed applications.  

 

(4) Limited evaluation of the hydraulic model: Evaluation of the sprinkler hydraulic 

model based on limited field data shows that the model is accurate. However, the model 

requires more extensive testing with field data in order to establish its limit of 

applicability and identify possible improvements.      
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