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Executive Summary                             

 

Solid set sprinkler irrigation systems are increasingly used for season long vegetable production 

in the Yuma Valley Irrigation Districts. The main benefit of replacing furrow irrigation with 

sprinklers is a significant increase in irrigation performance, and hence reduced water and 

fertilizer use. Existing systems were configured primarily to provide supplementary irrigation 

during the early part of the vegetable crop growing season. However, with season long use 

efficient and uniform application of irrigation water has become a concern to growers. 

Improvements in the performance of irrigation systems can be realized through evaluation of 

existing systems and operational practices, identification of limitations, if any, and the 

development of design and management tools as well as guidelines for best practices. 

With support from the Arizona Specialty Crops Council and the USBR, over the last 

couple of years, authors have conducted field and modeling studies of solid set sprinkler 

irrigation systems in the Yuma Valley Irrigation Districts (Zerihun et al., 2011; Zerihun and 

Sanchez, 2012). During the autumn-winter seasons of 2011-2013, field-scale sprinkler irrigation 

uniformity tests and hydraulic (pressure head and discharge) evaluations were undertaken in 

growers’ fields. An important outcome of the field studies consists of the development of a 

procedure (materials and methods) for field-scale irrigation uniformity evaluations. Results of 

these studies suggest that for the system configuration and irrigation (operation and maintenance) 

practices common in the Yuma Valley Irrigation Districts, typical irrigation application 

uniformity levels are high: average field-scale Christiansen’s uniformity coefficient (UCC) of 

about 0.85 and a low-quarter distribution uniformity (DUlq) of about 0.75. However, a few of 

the irrigation systems evaluated so far exhibited field-wide irrigation uniformities that fell well 

below the level considered satisfactory for solid-set sprinkler systems. In addition, the results 

also showed that even when the field-scale irrigation uniformities are high, significant localized 

deviations from the field averages were observed within a field. This highlights the significance 

of proper setting and routine maintenance and replacement of system components. It also 

underlines the need for field-scale irrigation uniformity evaluations to be performed based on 

more than one plot-scale tests, suitably distributed through the field.  
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Field studies can provide a realistic evaluation of irrigation uniformity levels. However, 

mathematical models present a more flexible and inexpensive alternative for developing optimal 

sprinkler irrigation system design and management recommendations. A mathematical model 

that can fully characterize the performance (uniformity, adequacy, and efficiency) of a field 

sprinkler irrigation system should be based on the coupling of a field-scale hydraulic submodel 

with components for simulating precipitation pattern about a sprinkler and soil water flow 

processes. The development of a computationally efficient and robust field-scale sprinkler 

irrigation model with such a capability remains a challenge. However, as a step towards this 

goal, the authors have developed a hydraulic model that can simulate the spatial distribution of  

pressure heads and discharges of field-scale solid set sprinkler systems, given system hydraulic, 

geometric, and topographic characteristics (Zerihun et al., 2014 and Zerihun and Sanchez, 

2014a). Limited evaluations of the hydraulic model, through a comparison of model output with 

measured data, suggest that the model is accurate. The model also has a functionality for 

computing field-scale irrigation performance based on measurements. 

Modeling studies and measured field-scale hydraulic data show that the hydraulic design 

of typical sprinkler systems, in the Yuma Valley Irrigation Districts, is robust: system hydraulics 

exhibit low sensitivity to appreciable changes in pipe hydraulic resistance and field slopes. The 

implication is that field-scale irrigation uniformity should be virtually insensitive to variations in 

these factors within reasonable ranges, provided the system is well maintained, the sprinkler 

characteristics is fairly uniform, system is properly installed, and is operated under ambient 

weather conditions conducive for the attainment of high irrigation uniformities (especially 

sufficiently low wind speed). However, the studies have also noted that a sprinkler system with 

high irrigation application uniformity, or even efficiency, may not necessarily be optimal from 

the perspective of economic return. Hence, a more comprehensive field-scale sprinkler system 

evaluation may need to be based on economic criteria to compare existing system layouts, pipe 

diameters, pipe appurtenances, and sprinkler combinations with potential alternatives. 

 

As part of the study reported here authors have worked on the development of a sprinkler 

irrigation precipitation pattern simulation model. Such models typically consist of two main 

components (Fukui et al., 1980; von Bernuth and Gilley, 1984; Seginer, et al., 1991; Carrion, et 
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al., 2001; Playan et al., 2006). Droplet population size and diameter ranges (factors related to the 

physical processes of droplet formation) along with droplet volumetric application rates are 

approximated with a semi-empirical procedure as a function of sprinkler design factors and 

nozzle pressure heads. A droplet dynamics model, that solves the equation of motion 

numerically, is used to simulate the trajectories (through the ambient air) and eventual landing 

coordinates on the irrigated surface of the individual droplets as dictated by gravitational, drag, 

and wind drift forces. Output of the droplet dynamics model can then be combined with the 

semi-empirically determined droplet volumetric application rate data to derive an estimate of the 

spatial distribution of precipitation about a sprinkler. Wind effects on droplet motion under 

sprinkler irrigated conditions are taken into account with empirical drag correction coefficients 

derived based on measured field data (Seginer, et al., 1991; Carrion, et al., 2001; Playan et al., 

2009). 

 The sprinkler precipitation pattern simulation model developed here is capable of 

simulating the spatial distribution of irrigation about sprinklers taking into account sprinkler 

design factors, sprinkler riser pipe height, nozzle pressure heads, and wind effects. Following the 

pattern described above, the model consists of two main components. The combination of 

computational and experimental (indoor and field) methods used in this study to determine 

droplet population size,  diameter ranges, and volumetric application rates and to estimate model 

parameters, related to wind effects on droplet motion, are largely based on the works of Fukui et 

al. (1980), Seginer, et al. (1991), and Carrion, et al. (2001). Derivation of the equations that 

forms the basis of the droplet dynamics modeling functionality developed here combines 

established ideas proposed in earlier studies, cited above, and also new concepts formulated as 

part of the current study in the accompanying document (Zerihun and Sanchez, 2014b). The set 

of nonlinear ordinary differential equations, governing droplet motion through the ambient air, 

derived as such are solved numerically with an embedded Runge-Kutta formulas consisting of a 

fourth-fifth order pair (Mathewes and Fink, 2004; Press et al., 1997; Burden et al., 1981). In 

addition, the physics of droplet dynamics as applied to sprinkler irrigation is reviewed in some 

detail and an alternative set of nonlinear differential equations, describing an impulsively started 

droplet motion through a viscous fluid (e.g., ambient air) that could be in a uniform horizontal 

motion itself, was derived in the accompanying document. 



 

 

9 

Evaluation of the sprinkler precipitation pattern simulation model, developed here, was 

undertaken at two levels. First, the output of the numerical droplet dynamics submodel was 

compared with a simplified analytical model, under applicable conditions. The results show that 

the numerical and analytical solutions are in good agreement, suggesting that the representation, 

in the numerical model, of the physics underlying droplet dynamics is sound.  In addition, 

analyses of the numerical solutions of the equations governing droplet motion under wind 

conditions show that model predictions are largely consistent with intuitive physical reasoning. 

Model evaluation results also indicate that model predicted sprinkler radial precipitation patterns, 

for a range of nozzle pressure heads, compare reasonably well with measurements obtained 

under no-wind conditions. Furthermore, a limited functional evaluation of the model, based on a 

comparison of model predicted and field measured irrigation uniformity and precipitation depths, 

suggest that the accuracy of the model is satisfactory. 

   As part of the study reported here, the potential application of the precipitation pattern 

simulation model in field-scale irrigation performance (uniformity, application efficiency, and 

adequacy) evaluation was explored. Field wide spatial distribution of sprinkler pressure heads 

computed with the hydraulic model, cited above, was used as an input to the precipitation pattern 

simulation model. The results of the field-scale simulation study suggest that the development of 

a coupled hydraulic, precipitation pattern, and soil water flow simulation model for use in field 

wide irrigation performance evaluation is technically feasible. However, for the coupled field-

scale irrigation model to be efficient and practically useful some significant limitations of the 

sprinkler irrigation precipitation pattern simulation model, pertaining to numerical efficiency and 

parameter estimation, need to be addressed prior to model coupling.   

Additional field-scale irrigation uniformity evaluations were conducted in growers’ fields 

in the Yuma Valley Irrigation Districts as part of the current study. Measured field-scale UCC 

and DUlq exceed 0.83 and 0.75, respectively, for two of the evaluation fields. However, the  

field-scale irrigation uniformities for two other fields, covered in the current study, fell 

appreciably short of what could be considered as satisfactory level for solid-set sprinkler systems 

(with UCC<0.75 and DUlq ≤0.58). Note that these results are largely in agreement with those 

obtained in earlier studies conducted by the authors. However, the poor irrigation performance in 

some of these fields points to the need for a follow up study, aimed at determining the 
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contributory factors, through evaluation of the current irrigation (maintenance and operational) 

practices and the hydraulics of the sprinkler systems.        

 

The report documented here consists of eight chapters. Chapter 1 presents the introductory 

section. Process description, including formation of artificial precipitation as well as 

simplifications and assumptions needed to reduce process complexity to a level that is physically 

and mathematically tractable, is presented in Chapter 2. Chapter 3 presents a review of sprinkler 

irrigation droplet dynamics modeling along with a summary of the governing equations and 

numerical solutions implemented in the model described here. Chapter 4 discusses computational 

and experimental procedures used in the determination of droplet volumetric application rates, 

model calibration taking into account wind effects, and the steps involved in precipitation pattern 

simulation. Chapter 5 provides a concise description of the components of the sprinkler irrigation 

precipitation pattern simulation model. Results of model evaluation are presented in Chapter 6. 

Chapter 7 discusses measured field-scale irrigation uniformity evaluation data. Chapter 8 

presents a summary of the report and lists recommendations for further studies.                     

 

Chapter 1 Introduction 

 

The use of solid set sprinkler systems for season long vegetable production in the Yuma Valley 

Irrigation Districts is expanding. With season long operation, uniform and efficient application of 

irrigation water with sprinkler systems has become a prime concern for growers. Efficient 

irrigations can be realized through the evaluation of existing systems and current operational 

practices, identification of limitations if any, and the development of design and management 

tools as well as guidelines for best practices.    

Over the last couple of years (2010-2013), the authors have conducted field and modeling 

studies of solid set sprinkler irrigation systems in the Yuma Valley Irrigation Districts (e.g., 

Zerihun et al., 2011; Zerihun and Sanchez, 2012). The field studies have led to the development 

of a procedure for field-scale irrigation uniformity evaluations. Results of these studies suggest 

that typical field wide irrigation application uniformities in the Yuma Valley could be high, with 

average field-scale UCC and DUlq of about 0.85 and 0.75, respectively. However, measured 
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field-scale irrigation uniformities in a small fraction of the fields evaluated so far was 

appreciably lower than the levels considered satisfactory for solid-set sprinkler systems. The 

results of the field studies have also shown that, even when field-scale irrigation uniformities are 

high, significant variations in uniformity levels exist within a field.         

Sound design and management of sprinkler systems is key to the efficient irrigation of 

crops. Mathematical models represent flexible and inexpensive irrigation system design and 

management tools. A sprinkler irrigation model that can be used for system design and 

management needs to have the following modeling components: a hydraulic component, a 

precipitation pattern simulation functionality, and an infiltration and soil water flow submodel. 

As a step towards the development of such a capability, a hydraulic model for simulating the 

field-scale spatial distribution of nozzle pressure head and discharge given the sprinkler system 

hydraulic, geometric, and topographic characteristics was developed (Zerihun et al., 2014; 

Zerihun and Sanchez, 2014a). A limited evaluation of the model with field data suggests that the 

model is accurate. The model also has a functionality for computing field-scale irrigation 

performance based on test-plot scale field measurements.  

Results of the field and modeling studies suggest that a typical sprinkler system in the 

Yuma Valley Irrigation Districts has a robust hydraulic design. The implication is that system 

performance should show very low sensitivity to appreciable changes in pipe hydraulic 

resistance characteristics and field slopes, provided the systems are properly set, maintained, and 

operated under conducive weather condition. However, the studies have also noted that a system 

with high irrigation performance is not necessarily equivalent to a system with high economic 

return.   

As a follow up to the modeling studies, described above, during 2013 authors have been 

working on the development of a sprinkler irrigation precipitation pattern simulation model. The 

model is based on a numerical solution of the governing equations of droplet dynamics, to 

simulate droplet motion through the ambient air, and a semi-empirical approximation of the 

droplet formation process and wind effects on droplet motion. It has the capability to compute 

the spatial distribution of irrigation about a sprinkler, as a function of sprinkler design 

characteristics (nozzle diameter and vertical tilt angle), sprinkler riser pipe height, nozzle 

pressure head, and wind velocity. The model was evaluated based on theoretical analyses and a 
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comparison of model output with measured data, obtained through single sprinkler indoor and 

field tests. The results suggest that the accuracy of model prediction is satisfactory.  

 Potential applications of the precipitation pattern modeling functionality in the simulation 

of field-scale spatial distribution of irrigation and performance characterization was explored. 

The result show that the development of  a field-scale sprinkler irrigation design, management, 

and evaluation tool through the integration of  the precipitation pattern modeling functionality 

with the sprinkler hydraulic submodule and a soil water balance computation component is 

technically feasible, once existing limitations as related to numerical efficiency and parameter 

estimation of the model described above are addressed.  

 

The overall objective of the study reported here is to conduct additional field evaluations in the 

Yuma Valley Irrigation Districts and to develop, and evaluate through comparison with 

measured data, a sprinkler irrigation precipitation pattern simulation model. The specific 

objectives of the study documented here are: (1) To conduct additional field evaluations in the 

Yuma Valley Irrigation Districts aimed at a more complete characterization of the range of 

variation of irrigation performance in the area, (2) To develop a sprinkler irrigation precipitation 

pattern simulation model based on the physics of droplet dynamics and to conduct a limited 

evaluation of the model with measured data, (3) To explore the potential application of the 

precipitation pattern simulation model in field-scale sprinkler irrigation simulation and irrigation 

performance computation; and (4) To develop recommendations for further study.      

 

 Chapter 2 Process description 

 

2.1 Formation of artificial precipitation under no-wind condition   

A typical field-scale solid set sprinkler system consists of an open pipeline network of 

aluminum pipes consisting of a main and laterals operating under pressure. Each lateral is fitted 

with regularly spaced riser pipes supporting a sprinkler head, which distributes water over the 

irrigated field in the form of precipitation. The type of sprinklers commonly used with solid-set 

sprinkler systems in the Yuma Valley Irrigation Districts, and are of interest in the study reported 

here, are the low to medium capacity impact sprinklers (typically operated with pressure ranging 
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between about 40.0psi-90psi). Descriptions of the component parts and the mechanisms of 

operation of these sprinklers can be obtained from manufacturers’ catalogue (e.g., WeatherTech: 

http://www.weathertec.com and Rainbird: http://www.rainbird.com). With these sprinklers, the 

sprinkler head is equipped with a spring loaded spoon like structure (known as the oscillating or 

impact arm) onto which the water jet emerging from the nozzle periodically impinges. The 

impact of the water jet on the oscillating arm provides the mechanical energy for rotating the 

sprinkler about its vertical axis. It also modifies the precipitation pattern about a sprinkler, 

mainly increasing the application rate at short and medium distances and reducing application 

rate at larger distances from the sprinkler (Bilanski and Kidder, 1958; Salvador et al., 2009) and 

reducing the wetted radius (Bilanski and Kidder, 1958; Burguete et al., 2007). 

Under no-wind condition, the precipitation pattern about a sprinkler and the 

corresponding irrigation application rate are considered symmetrical about the sprinkler. Hence, 

the field-scale application of sprinklers generally requires the wetted areas of adjacent sprinklers 

to be overlapped in order to irrigate a continuous tract of cropland. The implication is that the 

radial application pattern of a single sprinkler (a point source of water) is not only inherently 

nonuniform, but it need not be uniform. It is, however, desirable for the application pattern about 

a sprinkler to be such that, when the wetted areas of adjacent sprinklers are overlapped, an 

acceptably high level of field-scale irrigation uniformity is produced.  

Given a sprinkler, nozzle operating pressure, and ambient whether condition, the 

irrigation stream issuing from a sprinkler nozzle consists of a water jet of some degree of 

coherence. In the course of its motion through the ambient air, the water jet breakup into water 

droplets of varying sizes and reaches the surface of the irrigated field in the form of artificial 

precipitation (Kohl, 1974; Kincaid, et al., 1996; Salvador et al., 2009). The distribution of droplet 

sizes with distance from the sprinkler nozzle is the most important determinant of the resulting 

irrigation water distribution about a sprinkler.       

A qualitative description of the sprinkler irrigation stream breakup process, in the 

absence of the oscillating arm of the sprinkler, is described by Kohl (1974) and Salvador et al. 

(2009). A more rigorous physical and analytical description of the mechanisms of liquid jet 

breakup is provided by others (e.g., Miesse, 1955). The actual mechanics of the breakup and 

disintegration of a water jet from a sprinkler nozzle is complex and a rigorous description of it is 
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outside the scope of this study. Overall as the liquid jet emerges from the nozzle into the 

atmosphere, the sudden change in the interaction of the forces acting on it introduces instability 

into the coherence and integrity of the stream (Kohl, 1974; Miesse, 1955), the progression of 

which eventually leads to the complete disintegration of the liquid jet into a range of droplet 

sizes. Both experimental (Kohl, 1974; Salvador et al., 2009) and theoretical observations (e.g., 

Misses, 1955) suggest that at short and medium distances from the sprinkler nozzle the 

mechanisms responsible for the formation of finer droplets dominate the process and those 

leading to the formation of larger droplets takeover close to the far end of the sprinkler wetted 

radius. Finer droplets form at the surface of the liquid jet as a result of the interaction of turbulent 

eddies in the liquid column and drag at the water-air interface (Kohl, 1974; Miesse, 1955). On 

the other hand, finer droplets observed at the far end of the wetted diameter of the sprinkler can 

often be associated with the breakup of larger droplets into smaller ones. This phenomenon, also 

referred to as secondary atomization process, is discussed in the context of a theoretical analysis 

of liquid jet breakup processes by Miesse (1955). The processes responsible for the formation of 

smaller droplets occur at the liquid-air interface, and hence to a significant extent affected by the 

relative velocity of the liquid jet with respect to the ambient air (Kohl, 1974). However, close to 

the far end of the sprinkler wetted radius, the progressive roughening of the surface of the 

expanding liquid jet and the concomitant increase in drag results in a more rapid deceleration of, 

and increased air entrainment into, the liquid jet leading to its eventual disintegration, forming 

mainly larger water droplets. Note that observation of sprinkler operation suggests that the 

preceding description of distances from sprinkler, as related to the formation of different droplet 

diameters, is comparative and depends on nozzle pressure head and sprinkler design factors.     

Overall droplet size distribution is a function of the average cross-sectional velocity of 

the water jet and its diameter (Miesse, 1955; Kohl, 1974), pertinent physical properties of water 

and the ambient air, the state of motion of the ambient air, and the nature and physical properties 

of the initial instabilities in the water jet (Miesse, 1955). In the context of sprinkler irrigation, the 

average cross-sectional velocity of the water jet and its diameter are directly related to sprinkler 

nozzle size and operating pressure. In addition, the nature and physical properties of the 

instabilities introduced into the water jet is, to a significant extent, related to the internal design 

of the sprinkle nozzle. For example, Bilanski and Kidder (1958) have shown through  
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experimental studies that differences in the internal configurations of the sprinkler nozzle (in 

terms of the shape, surface roughness, surface grooving, and size of nozzle elements) can have 

substantial effect on irrigation application patterns about a sprinkler (application rate and wetted 

radius). Bilanski and Kidder (1958) attributed the effect of the internal design of the sprinkler to 

the kind of turbulence structure that the nozzle elements impart to the emerging water jet.  

The introduction of an impact arm to the sprinkler is known to results in a significant 

modification to the radial water distribution pattern about a sprinkler relative to the condition 

without an impact arm (Bilanski and Kidder, 1958). The change in the radial application rate 

about a sprinkler (increased application rate near and at medium distance from the sprinkler) 

could be attributed to a change in the range of droplet sizes formed in that distance range as a 

result of the mechanical action of the impact arm (Salvador et al., 2009). The reduction in 

sprinkler wetted radius noted by Bilanski and Kidder (1958) and Burguete et al. (2007), on the 

other hand, could be attributed to such factors as reduced energy of the water jet upon impact 

with the oscillating arm (von Bernuth and Gilley, 1984) and to differences in drag intensity under 

the two sets of conditions (Bilanski and Kidder, 1958; Seginer, 1991).  

 The preceding discussion shows that a range of droplet sizes are formed at any given 

distance along the trajectory of the sprinkler water jet. Smaller droplets account for a large 

fraction of the droplets formed at small to medium distances from a sprinkler, while larger size 

droplets dominate the population of droplets (statistically speaking) formed close to the distal 

end of the sprinkler wetted radius.  

 Measurement and characterization of droplet size distributions at preset radial distances 

from a sprinkler are key to the analyses and understanding of the relationship between sprinkler 

design factors and operating conditions, on the one hand, and associated irrigation application 

rates and precipitation patterns, on the other. A brief review of water droplet size distribution 

measurement and characterization approaches used in the context of sprinkler irrigation 

applications is presented in subsequent section.            

 

2.2 Droplet size distribution measurement and characterization  

 Considering a sprinkler and an operating condition, the droplet size distribution at a 

given radial distance form the sprinkler, may consist of simple frequency histograms or 
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functional frequency distribution showing the frequency or cumulative frequency of droplet 

diameters. However, a useful form, often used in the context of sprinkler irrigation application, 

consist of one in which measured droplet size distribution at a preset radial distance from the 

sprinkler is presented in terms of volume percentage and cumulative volume percentage of 

applied water versus droplet diameter ranges (Kohl, 1974; von Bernuth and Gilley, 1984; 

Kincaid et al., 1996). The volume percentage associated with a droplet diameter range is the 

percent, by volume, of irrigation water applied at the location that is attributable to the droplet 

diameter range. The cumulative volume percentage associated with a given droplet diameter, 

represents the percent, by volume, of irrigation water applied at a given location by water 

droplets with diameters less than or equal to a specified value. At any given radial location from 

a sprinkler, the droplet size distributions expressed in terms of volume and cumulative volume 

percentages are derived by combining frequency distributions of measured droplet diameters and 

irrigation depth collected in a rain gage at the same location (Kohl, 1974; Von Bernuth and 

Gilley, 1984; Kincaid et al., 1996; Salvador et al., 2009). 

 Given a sprinkler model and nozzle size, droplet size measurements are typically 

conducted indoors (at zero wind velocity and often under atmospheric conditions that minimize 

evaporation losses: moderate temperature and high humidity), constant operating pressure head, 

and known sprinkler riser height. Note that measured droplet size distributions, at any given 

radial distance from the sprinkler, often refer to the distributions of the droplet sizes observed as 

the droplets approach the irrigated surface (Salvador, et al., 2009). Droplet size measurement 

methods used in sprinkler irrigation characterization have been discussed by Kincaid et al. 

(1996) and Salvador et al. (2009). These methods can broadly be categorized in two types:  

 

(i) The indirect methods rely on the measurement and analysis of some signature left by droplets  

upon impact on a receiving medium to derive a droplet size frequency distribution at selected 

radial distances from the sprinkler. The receiving medium could be an absorbent paper in which 

case the individual stains left by impinging droplets is used to empirically estimate droplet 

diameters (stain method). It could also be a thin layer of flour in which case the size of the pellets 

formed by water droplets upon impact is used to derive the corresponding droplet diameters 

(pellet method, e.g., Kohl 1974).  
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(ii) The direct methods include those techniques that are based on the analysis of, images of 

droplets taken while in motion or, the changes that droplet motion through an imposed 

electromagnetic field induces on the field to estimate droplet diameters and/or velocities. Images 

of droplets obtained through high speed digital photography can be used to estimate water 

droplet size distributions and associated velocities at selected radial distance from the sprinkler 

(Salvador et al., 2009). In addition, the changes that water droplets induce in the properties of an 

imposed electromagnetic field, as they pass through it, can be analyzed by a detector to 

determine the droplet sizes (Kincaid et al., 1996). A comparative discussion on the advantages 

and limitations of some of these methods is provided by Kincaid, et al. (1996) and Salvador et al. 

(2009). Alternatively, photographs of water droplets trapped in oil can be used to derive droplet 

size distributions (oil immersion technique, e.g., Eigel and Moore, 1983). 

 

Overall measured sprinkler droplet size distributions show that at each measurement station 

along the wetted radius a range of droplet diameters are collected (Kohl, 1974; Kincaid et al., 

1996; and Slavador et al., 2009). The results also show that the population of finer droplet sizes 

dominates the droplet size frequency distributions in close vicinity of the sprinkler and at 

intermediate distances. On the other hand, the frequency of droplets in the smaller diameter 

range diminishes progressively with distance and at the far end the population of larger droplets 

dominates the droplet size frequency distribution. Although, as would be expected, the volume 

percentage of applied irrigation water at the far end of the sprinkler wetted radius is dominated 

by contributions from large droplet sizes, at short and medium distances from the sprinkler as 

well the contribution of relatively larger droplets is not insignificant (Kohl, 1974; Von Bernuth 

and Gilley, 1984; Kincaid et al., 1996; Salvador, et al., 2009). At short and medium distances 

from the sprinkler, the number of large droplets expressed as a fraction of the total number of 

droplets collected is small; however, the volumetric contribution of large diameter droplets is 

appreciable, because droplet volume increases as a cubic function of diameter.   
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2.3 Droplet motion, interaction among droplets and with the ambient air under field  

      conditions                                                                                                        

 The process by which a coherent irrigation stream issuing from a sprinkler nozzle 

completely disintegrates into a range of droplet sizes, before it reaches the irrigated field surface 

in the form of precipitation, is further complicated by the changes that droplets may undergo 

during their motion through the ambient air. Water droplets that have already been separated 

from the water jet may collide with each other and breakup into smaller droplets. The forces 

exerted by the ambient air on a droplet are modified by the motion of adjacent droplets (Temkin 

and Kim, 1980; Seginer et al, 1991; Burguete et al., 2007). Larger droplets could undergo 

substantial deformation as they accelerate through the ambient air (Laws, 1941), which could 

significantly alter the nature and magnitude of the drag force acting on the droplet compared to 

an equivalent spherical shaped droplet. In addition, a water droplet of a given size accelerating 

through the ambient air can remain intact only if its velocity remains within the bounds of a 

threshold velocity. If this velocity is exceeded the inertial forces become sufficiently large to 

overcome the force that holds the droplet intact, surface tension (Miesse, 1955; Temkin and Kim, 

1980). Hence the droplet can breakup into smaller diameter droplets. Furthermore, water droplets 

may change in size in the course of their motion due to evaporation (Goering, 1972; Silva and 

James, 1988; Kincaid and Longley, 1989). Time dependent droplet diameter implies time 

dependent droplet specific surface area, evaporative surface, and drag characteristics. Finally, the 

presence of wind which could be unsteady and nonuniform with a time varying direction 

introduces a substantial modification to the water jet and droplet relative velocities with respect 

to the ambient air. Noting that relative velocity is an important factor not only in droplet motion 

(trajectories and final destination) but also in their formation, the significance of wind in 

irrigation water distribution pattern about a sprinkler cannot be overemphasized.  

 

2.4 Simplifying assumptions and process conceptualization for physical modeling   

 The preceding discussion highlights the complexity of the physical mechanisms involved 

in the irrigation stream breakup process, the formation of water droplets, and their subsequent 

motion through the ambient air and the changes they undergo through interactions among 

themselves and with the ambient air. A complete physics based simulation capability of the 

process presented above may require the coupling of a modeling component (describing the 
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formation and motion of a coherent water jet, its progressive breakup, and eventual 

disintegration into droplets) with a module for computing the trajectories of the individual water 

droplets from the point they depart the irrigation stream till they reach the soil surface. The 

development of such a model is evidently a formidable theoretical undertaking for any 

application and certainly impractical in the context of sprinkler irrigation modeling. Hence, a 

simplified conceptualization of the process is often made with the aim of reducing the problem 

into a mathematically and physical tractable form. With such an approach the intricacies of the 

physics of sprinkler irrigation stream breakup process is altogether ignored and is supplanted by  

a simplified conceptual and physical model that uses an empirically determined sprinkler 

irrigation application rate data. The objective being developing a modeling capability that can 

reproduce in an approximate sense the essential end result of an irrigation process: the 

distribution of applied water about a sprinkler, given a set of operating conditions.     

 At the center of any physics based modeling tool designed to simulate the distribution 

pattern of irrigation water about a sprinkler is a droplet dynamics model. A droplet dynamics 

model simulates the motion through the ambient air of individual droplets. The governing 

equation of droplet dynamics is Newton’s second law of motion (Fukui et al., 1980; von Bernuth 

and Gilley, 1984; Seginer, et al., 1991; Carrion, et al., 2001; Playan et al., 2006). The equation of 

motion relates the net unbalanced force acting on a water droplet computed as the vector sum of 

the major forces of aerodynamic drag, droplet weight, and wind drift force with the acceleration 

of the particle. The resulting set of differential equations can then be solved numerically, given 

the initial velocity and location of the particle (droplet) as it breaks away from the water jet, to 

determine its destination and trajectory in a selected coordinate system. While a droplet 

dynamics model is capable of simulating the motion of individual droplets, the artificial 

precipitation about a sprinkler consists of countless number of droplets with highly variable 

droplet diameters and not very well defined initial conditions. Hence, the question is what 

realistic set of simplifications can be made in order to develop a sprinkler irrigation precipitation 

pattern simulation model with a physically based droplet dynamics sub-model at the core of it. 

From the preceding discussion it is evident that the main sources of complexity in any 

attempt aimed physics based modeling of precipitation pattern about a sprinkler are:  
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(i) Uncertainty associated with the initial conditions (velocity and location) of droplets as they 

form; (ii) Complexity associated with modeling the time evolution of the diameter of individual 

droplets, in the course of their motion, as affected by evaporation; (iii) Complexity arising from  

the need to model the effects of changes in droplet shape and droplet-droplet interactions on drag 

(either directly or indirectly through the effects of droplet motion on the ambient air); and  

(iv) Complexity associated with modeling the effect of wind on droplet motion, especially taking 

into account the nonuniform and transient nature of wind. Sprinkler irrigation precipitation 

pattern simulation models (Fukui et al., 1980; Seginer et al., 1991; Carrion et al., 2001; Playan et 

al., 2009) are based on a set of simplifying assumptions mainly aimed at reducing these complex 

features of the actual process of droplet formation and motion to a level that is mathematically 

tractable, yet sufficiently rigorous to capture the essential features of the process pertinent to 

irrigation system design and management:    

 

1. Irrigation stream disintegrates into a range of water droplet diameters at the sprinkler nozzle;  

2. The initial velocity of the droplets is equal to the average cross-sectional stream velocity at 

the sprinkler nozzle (which can be computed as a function of nozzle diameter, pressure head, 

and sprinkler hydraulic characteristics);            

3. The individual water droplets move through the ambient air independent of each other 

(without collision and the forces that the ambient air exert on droplets remain an affected by 

the motion of adjacent droplets);  

4. Individual water droplets assume spherical shapes at emergence from the nozzle and remain 

spherical throughout their motion; 

5. The diameters of the individual water droplets remain invariant throughout their motion (note 

that this should not imply that evaporation is neglected. Instead it is a statement of the fact 

that  evaporation is not computed with a mechanistic model per individual droplets basis)   

6. Under wind conditions, the ambient air in which the water droplets are fully immersed in is  

considered to be in a steady uniform flow on a horizontal plane with no vertical component.      

 

Overall the implications of these assumptions for sprinkler irrigation droplet dynamics are: the 

initial conditions for droplet motion are established, droplets are treated as rigid spheres with 
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constant diameter and shape throughout their motion. The dynamics of the complex process of 

the simultaneous motion of a system of particles (which involves direct interaction between 

particles and indirect interaction through their effect on the ambient air) can be reduced to the 

dynamics of an impulsively started motion of individual particles, with known diameters and 

initial conditions, through a viscous fluid. In which case the (physical) modeling objective 

reduces to that of determining the landing coordinates of the droplets only and not the volumetric 

water contents of the individual droplets. The volumetric application rates associated with each 

droplet is then empirically determined.  

 The preceding discussion shows that references to, and descriptions of, water droplets in 

the context of sprinkler irrigation droplet dynamics modeling should not imply actual water 

droplets stemming from the breakup and disintegration of an irrigation stream. In stead they refer 

to the “virtual” droplets derived in accordance with the assumptions described above. A question 

that may then arise is as to how the range of variation of the droplet diameters, used for modeling 

purposes, and the corresponding radial irrigation application rates can be determined. A concise 

description of the approach commonly used to determine droplet diameter ranges and associated 

volumetric application rates in sprinkler irrigation precipitation pattern simulation (e.g., Fukui et 

al., 1980; von Bernuth and Gilley, 1984; Vories et al., 1987; Seginer et al., 1991; Carrion et al., 

2001, Playan et al., 2009) is presented in the following section with a more detailed 

computational procedure described in Chapter 4.      

    

2.4.1 Precipitation pattern about a sprinkler under no-wind condition 

Considering a condition in which all the assumptions listed above are met and where 

wind velocity is zero (implying symmetrical application rate about a sprinkler), the basics of 

mechanics suggest that for a given sprinkler and operating condition the trajectories and landing 

coordinates of individual droplets, referenced from the sprinkler location, are functions of droplet 

diameter only (Figure 1). With smaller diameter droplets falling close to the sprinkler and larger 

droplets further out. This implies that, for any given application, the maximum droplet diameter 

can be directly related to sprinkler wetted diameter, which in turn is a function of sprinkler  
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    Figure 1. Schematics of the conceptualization of precipitation pattern about a sprinkler  

        for droplet dynamics modeling  

 

model, nozzle size, sprinkler riser height, and operating pressure and can be determined through 

measurements. The minimum droplet diameters can be determined based on numerical 

(efficiency and robustness) considerations. The resulting droplet size range can then be 

discretized into a convenient number of subintervals (droplet diameters), which for the most part 

is a function of computational time. A droplet dynamics model can then be used to determine the 

landing coordinates of each droplet size within the predefined range. However, as a direct 

consequence of the simplifying (limiting) assumptions listed above the volumetric application 

rates associated with individual droplet diameters, within the preset range, is different from the 

volumetric water content of the droplet and cannot be computed as part of the numerical solution 

of the droplet dynamics model. Instead the droplet volumetric application rates are determined 

by correlating radial water application rates measured under no-wind condition with the landing 

coordinates of the individual droplets. Hence, the basic notion that underlies the simplified 

sprinkler irrigation precipitation pattern modeling framework can be stated as: the landing 

coordinates of a suitably defined range of droplet diameters, computed with a physically based 

droplet dynamics model, coupled with a semi-empirically determined droplet volumetric 
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application rate data can be used to approximate irrigation water distribution pattern about a 

sprinkler or a set of sprinklers with satisfactory accuracy. 

Considering a full-circle impact sprinkler (commonly used in solid set sprinkler systems), 

the water distribution pattern about a sprinkler can be computed by rotating the simulated radial 

application rate pattern about the sprinkler through 360o at preset angular discretization steps. 

The resulting application rate pattern about a sprinkler can then be integrated over the irrigation 

application duration to determine the spatial distribution of irrigation depth. Furthermore, 

assuming water droplets from different sprinklers do not interfere with each other’s motion, 

water distribution patterns from adjacent sprinklers can be overlapped to compute field-scale 

irrigation distribution. Sprinkler radial application rate characterization measurements made at a 

given pressure head can be used for a set of sprinklers in an irrigated field with no significant 

pressure head variation. Assuming the same sprinkler model and nozzle size are used throughout 

an irrigated field (which is a common practice), in order to cover the pressure head variation over 

an irrigated field indoor sprinkler tests may need to be conducted at a couple of different pressure 

head levels spanning the pressure range in the field.  

 

2.4.2 Precipitation pattern about a sprinkler under field conditions   

The application of droplet dynamics models to simulate irrigation water distribution 

about a sprinkler under no-wind condition does not necessarily bring in new information to that 

obtained through measurements. However, sprinkler irrigation typically takes place under wind 

and the application of such a model is more useful in the context of simulating, wind distorted 

sprinkler irrigation application patterns (or the effects of wind speed and direction on 

precipitation pattern about a sprinkler). Note that the effect of wind on irrigation precipitation 

pattern operates at two levels. It distorts the trajectories and landing coordinates of individual 

droplets (compared to an equivalent no-wind condition) and also it affects the physical processes 

of liquid jet breakup and droplet size distributions (e.g., kohl, 1974), by modifying the relative 

velocity of the water jet with respect to the ambient air. However, given the simplifications that 

have already been introduced, a rigorous and explicit accounting of these effects within the 

modeling framework described here for sprinkler applications is unwarranted. Hence, the 
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established approach for modeling wind effects on precipitation pattern about a sprinkler (Fukui 

et al., 1980; Vories et al., 1987; Seginer et al., 1991, Carrion et al., 2001) consists of:  

 

(i) For a given sprinkler and nozzle operating pressure, the droplet sizes and associated  

volumetric application rates are assumed to remain the same as that derived for no-wind 

condition, and  

 

(ii) The effect of wind on precipitation pattern is taken into account with empirical shape fitting 

parameters derived based on field measured irrigation water distribution under wind condition.  

 

As will be discussed in subsequent sections, this is the approach used in the model developed in 

the study reported here. Apparently the predictive capability of such a model is limited. 

However, such limitations can be overcome if a database of the shape fitting parameters is 

developed as a function of sprinkler model, nozzle size, sprinkler pressure head range, and 

average wind speed.  

The practical significance of a droplet dynamics model is to afford irrigation engineers 

with capability to simulate irrigation precipitation pattern about a sprinkler given sprinkler 

design factors, sprinkler pressure head, and ambient weather condition, mainly wind speed and 

direction, relative humidity, and temperature. Such a model, coupled with a sprinkler system 

hydraulic and soil water flow submodels, can eventually be used for field-scale irrigation system 

design, management, and evaluation. Evidently, sprinkler precipitation pattern simulation is 

more than droplet dynamics, however, the droplet dynamics modeling functionality forms the 

physical basis of a sprinkler precipitation pattern simulation model. Hence, much of the effort, as 

related to problem formulation and numerical solution of sprinkler precipitation pattern 

simulation model, is directed at developing the droplet dynamics submodel. Subsequent 

discussion reviews droplet dynamics modeling mainly in the context of sprinkler irrigation and 

then presents the form of the equation used in the numerical droplet dynamics submodel 

developed as part of the current study. A more detailed discussion on the theoretical basis and 

derivation of pertinent equations is presented in an accompanying document (Zerihun and 

Sanchez, 2014b).  
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Chapter 3 Sprinkler irrigation droplet dynamics modeling 

 

3.1 Literature review  

Early droplet dynamics models, developed in the context of sprinkler and spray 

applications, did not take into account wind effects on droplet motion, hence aerodynamic drag 

and gravity were considered as the only forces acting on droplets (Green, 1952; Bilanski and 

Kidder, 1958; Smith, 1970; and Goering et al., 1972). Some of these models assumed that drag 

force exerted on the droplet by the ambient air can be expressed as a linear function of droplet 

relative velocity (Green, 1952; Bilanski and Kidder, 1958). Seginer (1965) evaluated the form of 

the drag equation as related to the exponent of the droplet velocity vector, based on measured 

data from Laws (1940), and suggested that an equation that relates drag with the square of the 

droplet velocity can yield satisfactory results when applied to modeling droplet motion in 

sprinkler irrigation context. Smith (1970) and Goering et al. (1972) used an equation that relates 

drag with the square of the droplet velocity vector to model droplet motion, with the effect of 

evaporation taken into account. These early studies were limited to the formulation of the 

physics, which govern the motion of a droplet in a quiescent air and, pertinent numerical and 

analytical solutions. 

 

Droplet dynamics in the context of sprinkler irrigation application concerns the unsteady motion 

of water droplets through the ambient air, which could be quiescent (no-wind condition) or under 

steady uniform smooth horizontal motion itself (e.g. Fukui et al., 1980; Vories et al., 1987; 

Seginer et al., 1991; Carrion et a, 2001; Playan et al., 2009). Individual droplets are considered to 

be of constant size and shape throughout their motion, hence can be treated as solid spheres as 

far as their drag characteristic is concerned. Droplet motion is treated as an impulsively started 

motion at the sprinkler nozzle with known initial condition. The motion is curvilinear on the 

vertical plane, because of gravity. On the other hand, droplet motion on the horizontal plane is 

rectilinear, if the ambient air is quiescent or, it can be curvilinear if there is wind.    

A sprinkler irrigation droplet dynamics model simulates the motion through the ambient 

air of individual droplets. The governing equation of droplet dynamics is a mathematical 

description of Newton’s second law of motion (Fukui et al., 1980; von Bernuth and Gilley, 1984; 
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Seginer, et al., 1991; Carrion, et al., 2001; Playan et al., 2009). The equation of motion relates 

the net unbalanced force acting on a water droplet, computed as the vector sum of the major 

forces acting on the droplet, with its acceleration. The resulting set of differential equations can 

then be solved numerically given the initial velocity and location of the particle (droplet) as it 

breaks away from the water jet, to determine its trajectory in a selected coordinate system and 

destination on the irrigated field surface.  

  A sprinkler irrigation precipitation pattern simulation model, with a droplet dynamics 

component that solves the equation of motion numerically, was developed by Fukui et al. (1980). 

The droplet dynamics submodel was developed based on the simplifying assumptions listed in a 

preceding section and has the following form: 
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Noting that the mass, m (M), and the projected area normal to the direction of motion, A (L2), of 

a droplet of diameter d (L) are given as 
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where Vx [L/T], Vy[L/T], and Vz[L/T] = components of droplet absolute velocity vector, V, along 

the three coordinate axes of x, y, and z, respectively; Wx [L/T] and Wy[L/T] = components of the  

wind velocity vector, W, along the x and y coordinate axis; t [T] = time;  x[L], y[L], and z[L] = 

coordinates of droplet location in a rectangular coordinate system; Cds = steady state drag 

coefficient which is a function of the Reynolds number, Re [-];  i, j, and k  = unit vectors along 

the x, y and z coordinate axes, respectively; g = gravitational acceleration (L/T2); w = density of 

water [M/L3];  π = the ratio of the circumference of a circle to its diameter [-];  and  = density 

of the ambient air [M/L3]. Equations 1-6 represent a coupled system of differential equations 

with six unknowns (Vx,Vy,Vz, x, y, z), which can be solved numerically after having been coupled 

with pertinent initial conditions (e.g., Fukui et al., 1980).  

 

Note that in Eqs. 1-6, the forces that are explicitly considered are those of drag, D [ML/T2], and 

droplet weight, Fw [ML/T2], expressed as: 
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The above formulation implicitly assumes that wind effects on droplet motion can be 

encapsulated in the drag equation, expressed in terms of the droplet relative velocity vector. It 

can be noted that the equation of droplet dynamics presented above, Eqs. 1-6, is analogous in 

form to that derived for droplet motion under no-wind condition in the accompanying document. 

The approach proposed by Fukui et al. (1980), in terms of mathematical formulation of the 

physical problem and numerical solution, for the most part remained a pattern adopted by 

subsequent studies. von Bernuth and Gilley (1984) and Vories et al. (1987) developed a sprinkler 
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irrigation precipitation pattern simulation model with a droplet dynamics submodel, based on a 

numerical solution of Eqs. 1-6. While Fukui et al.’s model expressed the drag coefficient as a 

function of the droplet Reynolds number, von Bernuth and Gilley (1984) and Vories et al. (1987) 

expressed the drag coefficient as a function of the droplet diameter. Seginer et al. (1991) 

developed a numerical droplet dynamics model based on a solution of the equations of motion, 

with the form given in Eqs. 1-6. In order to take into account the effect of wind on sprinkler 

distribution pattern more effectively, Seginer et al. (1991) proposed a correction to the steady 

state drag coefficient  
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where Cdw = corrected drag coefficient under wind condition [-], kf = empirical fitting parameter 

[-], and  = angle between droplet relative velocity and wind velocity vectors (Figure 2). It can 

be noted from Eq. 9 that this formulation of the drag coefficient implies that the drag force 

exerted on the droplet would be the vector sum of two components. A component acting along 

the line of action of the droplet relative velocity vector and another in a direction collinear to the 
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  Figure 2 Velocity diagram depicting droplet absolute and relative velocity vectors, and wind  

                velocity vector (where α = angle between wind velocity and droplet absolute velocity  

                vector,  = angle between droplet absolute and relative velocity vectors, and  = angle  

                between wind velocity and droplet relative velocity vector) 
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wind velocity vector. Carrion et al. (2001) and later on Playan et al (2009) published a sprinkler 

irrigation precipitation pattern simulation model with a droplet dynamics submodel based on a 

numerical solution of the equation of motion (Eqs. 1-6). They noted that the drag correction 

factor proposed by Seginer et al. (1991) can represent the effect of wind in the direction parallel 

to the prevailing wind. However, in order to account for the field observed reduction in sprinkler 

wetted radius in a direction normal to the prevailing wind satisfactorily, these authors introduced 

an additional correction to the drag coefficient and gave the following expression for Cdw:  
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where kf1 [-] and kf2 [-] = empirical fitting parameters and  = the angle that the absolute velocity 

vector makes with the relative velocity vector (Figure 2). The numerical solution of the scalar 

differential equations of motion presented above (Eqs. 1-6) is based on some variant of the 

Runge-Kutta method (Fukui et al., 1980; Seginer et al., 1991; Carrion et al., 2001; and Playan et 

al., 2009).  

 

3.2 Equations used in the numerical droplet dynamics model developed in the current  

      study 

 Derivation of the equations that form the basis of the droplet dynamics model developed 

here   combines established ideas developed in earlier studies and also new concepts formulated 

as part of the current study (Zerihun and Sanchez, 2014b). Sprinkler irrigation is typically 

undertaken under wind condition and droplet dynamics under no-wind condition is a special case 

of that occurring under wind. Hence, the general case of droplet motion under wind is considered 

here, which is unsteady and curvilinear. A discussion on the forces that the ambient air exerts on 

a droplet undergoing unsteady motion and the modification that needs to be made to the steady 

state drag coefficient in order to take into account the aggregate effects of these various forces in 

the drag equation is described in a companion document. In addition, these authors have also 

shown that the major forces acting on a droplet undergoing unsteady motion under wind consists 

of drag, droplet weight, and wind drift force. However, following the approach commonly used 

in sprinkler irrigation droplet dynamics (Fukui et al., 1980; Vories et al., 1987; Seginer et al., 

1991; Carrion et al., 2001, Playan et al., 2009), as an initial approximation wind effects on drag 

and droplet drift are assumed to be encapsulated in the drag equation, Eq. 9. The expression for 
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drag is then resolved into a component collinear with the droplet absolute velocity vector, D, 

which represents the effect of wind on the unsteady drag force and a component normal to the 

droplet absolute velocity vector, FWD, which approximates the effect of wind on droplet drift. In 

acknowledgement of the fact that the equations derived as such are not exact expressions for 

drag and wind drift forces, they are then multiplied by empirical scale factors. The resulting 

scalar differential equation describing droplet motion under wind can then be expressed as 

(Zerihun and Sanchez, 2014b):                                                      
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ψ4 = the reciprocal of droplet mass [1/M], ζ1 (-) and ζ2 (-) = are scale factors related to wind 

effects on droplet drag and drift (a more detailed description of which is presented in the 

accompanying document), and Cdu = unsteady drag coefficient [-]. An empirical expression for 

Cdu is presented later. The average wind speed and wind vector azimuth (a measure of wind 

direction) for the duration of irrigation or hourly average wind velocity data can be obtained 

through measurements, based on which the components along the horizontal coordinate axes can 

be computed.   

           Equations 13-18 represent a coupled system of (six) ordinary differential equations with 

six variables, which constitute an initial value problem that can be solved numerically given the 

initial conditions. Considering the intersection of the centerlines of the lateral and the sprinkler 

riser pipe as the origin of the coordinate system, applicable initial conditions can be given as: 
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In Eq. 21, z0 = sprinkler riser pipe height (L), |V0| = the magnitude of the droplet initial absolute 

velocity vector (L/T), and x0, y0, and z0 = the angles that the droplet initial absolute velocity 

vector makes with the x, y, and z coordinate axes, respectively.  

The droplet initial absolute velocity vector can be computed based on measured pressure 

head, sprinkler hydraulic characteristics, and nozzle diameter. Considering a counter clockwise 

sprinkler rotation referenced from the positive x-axis (Figure 2), the sprinkler nozzle angular 

setting on the horizontal plane, θhx0, is known. The sprinkler vertical tilt angle, θ (degree), is also 

a known quantity for a given sprinkler model. Then the angles that the initial velocity vector 

makes with the coordinate axes (θx0, θy0, and θz0) can be computed with              
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The preceding discussion assumes that the expression for aerodynamic drag, given in Eq. 9, has 

the mathematical structure to encapsulate the effects of the major forces acting on the droplet, 

including wind effects on both drag and droplet drift, and produce the kind of motion resulting 

from the action of such forces on a droplet in some scaled fashion. Considering the alternative 

set of equations derived in the accompanying document, the similarity in form of the terms 

representing droplet drag and wind drift forces lends some support to this observation.  

 Temkin and Kim (1980) and Temkin and Mehta (1982) proposed an empirical 

expression for the unsteady drag coefficient, Cdu, given as the sum of the steady state drag 

coefficient and a term representing some function of the droplet acceleration number. Their 

equation was developed based on laboratory experiments covering limited set of conditions in 

terms of droplet Re, droplet diameter ranges, and air flow velocity compared to those 

encountered in field sprinkler applications. Hence, its applicability to droplet motion, in the 

context of sprinkler irrigation modeling, is yet to be determined. In the model developed here the 

effect of acceleration is taken into account by introducing an empirical drag correction parameter 

for acceleration effects, ζ3 (-), in a form given in Eq. 23            

 )(ReCC dsdu 23)( 3+=  

 

3.3 Special cases and parameter values  

 The model parameters defined above, Eqs.13-18, are scale factors for wind effects on 

drag, ζ1, and droplet drift, ζ2, and the drag coefficient correction factor for acceleration effects, 

ζ3. These parameters can in theory be estimated through inverse modeling, if all the model inputs 

including initial conditions and wind velocity vector are known and the complete trajectory of a 

droplet is given. As described in the derivation of Eqs. 13-18, in the accompanying document, 
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some physical meaning can be attributed to these parameters when they are used in the context of 

simulating the motion of a droplet. However, when applied to the simulation of sprinkler 

irrigation precipitation pattern they represent shape fitting parameters. The range of variation of 

these parameters is not yet determined. In subsequent sections some tentative ranges, derived 

based on numerical simulations, will be presented (Section 6.3.2). Here, however, the values that 

these parameters assume under some special conditions are discussed: 

 

(i) For steady state condition (water droplet relative velocity, Vr, is invariant with time), then  

the drag correction coefficient for acceleration effects is set at ζ3 = 0.0. Such a condition implies 

that the droplet has accelerated to the terminal velocity in the course of its motion.  

 

(ii) For unsteady water droplet motion the parameter ζ3 ≠0.0. In theory this should typically be 

the case in sprinkler droplet dynamics modeling. 

 

(iii) For unsteady, but quiescent ambient air ζ3  0.0 and Wx  = Wy  = 0.0. In addition, setting the  

parameter ζ1 = 1.0 and ζ2 = 0.0, reduces Eqs. 13-18 to the form applicable to no-wind condition 

(Eqs. 22-27, in the accompanying document).  Alternatively setting ζ1 = 0.0, ζ2 = 1.0, 2 = 0.0,  

and Wx  = Wy  = 0 yields the same form, in the model described here this is the option 

implemented.   

 

(iv) Considering that the initial conditions for all droplets are the same, it follows that at the 

sprinkler nozzle droplet kinetic energy per unit volume is also the same for all droplets. 

However, drag per unit volume increases with a decrease in droplet diameter, because of the 

associated increase in droplet specific surface area, which affects the empirically determined 

steady state drag coefficient. This implies that the initial kinetic energy of finer droplets can be 

dissipated by a relatively larger drag to such an extent that the horizontal component of the 

droplet absolute velocity vector becomes nearly zero at relatively short distances from the 

sprinkler. When this occurs under wind, one option is to assume a zero horizontal droplet 

velocity thereafter (e.g., Playan et al., 2009). An alternative approach used by Thompson et al. 

(1993a,1993b) and implemented in the computational framework of the model described here 
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(Section 3.5) assumes that the droplet is fully carried by the ambient air. In which case the 

direction of droplet motion is reversed and droplet assumes a horizontal velocity equal to the 

wind velocity. In such a scenario, Vx = Wx, Vy = Wy, and the parameters, ζ2, is set to 1.0. 

 

3.4 Numerical solution  

The system of equations describing sprinkler droplet dynamics for conditions involving 

unsteady droplet motion through the ambient air (Eqs. 13-18 and 20) represents an initial value 

problem. This system of equations can be solved numerically. Computation begins at the lower 

limit of the interval, over which the function is defined, based on known values of the function 

there and advances with time over suitably selected time steps, which could be constant or 

variable. For each subsequent step an approximation of the function is computed based on the 

solution from the preceding time step or steps. The process is repeated until the domain of the 

function is covered. The basic idea consists of assuming the numerical error introduced at each 

step is sufficiently small and remains bounded as the solution advances with time; the numerical 

solution yields an approximation that is sufficiently close to the exact/analytical solution. 

Although numerical errors have both rounding off and truncation error (resulting from numerical 

approximation of exact solutions) components, the rounding off errors are properties of the 

computing machine, hence are given. Thus the effort in improving accuracy of numerical 

approximations is mainly aimed at reducing the local truncation error. An array of numerical 

methods is available for solving initial value problems, which differ in the level of accuracy as 

well as numerical efficiency and robustness. The methods are described as single step (in which 

case an approximation of the function at any given time step is computed as a function of its 

value from the immediately preceding time step only) or multistep methods (where numerical 

approximations of the function computed in more than one of the preceding steps are used to 

compute the new value of the function). These methods can also be described as explicit or 

implicit, depending on whether the unknown function can be expressed as an explicit function of 

the already computed function values (explicit) or the functions have an implicit form and need 

to be evaluated through the solution of a coupled system of nonlinear equations (implicit). 

Explicit methods are relatively simpler than implicit methods, but have time step size 

restrictions. Subsequent discussion is limited to explicit numerical solution techniques.   
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A description of some of the well known single step and multistep explicit methods for a 

numerical solution of initial value problems is widely available in the literature (e.g., Mathews 

and Fink, 2004; Burden et al., 1981; and Dormand, 1996). Single step methods are relatively 

simpler, although less accurate and efficient compared to multistep methods (Mathews and Fink, 

1999; Burden et al., 1981). However, some variations of the most widely used class of single 

step methods, higher order Runge-Kutta methods, can be robust, easy to implement, and of 

reasonable accuracy (Mathews and Fink, 2004; Dormand, 1996). In addition, single step methods 

have the advantage of being self-starting as opposed to the multistep methods which often use 

single step methods to initiate a numerical computation. In the current study, an explicit Runge-

Kutta method is used to solve the initial value problem (Eqs. 13-18 and 20). Runge-Kutta 

methods were used to solve the equations of sprinkler droplet dynamics (Fukui et al., 1980; 

Vories et al., 1987; 1980; Seginer, et al., 1991, Carrion et al., 2001; Playan et al., 2009).  In 

subsequent discussion, a brief description of the Runge–Kutta method and the basic principle on 

which it is based is presented. In order to simplify the presentation, first an initial value problem 

consisting of a single equation will be considered, and then the results will be generalized for a 

system of equations. Based on which the specific Runge-Kutta method used to solve the system 

of equations given in Eqs. 13-18 and 20 and the associated error measures will be described.            

 

3.4.1 Runge-Kutta method, a review 

 

Description: Consider an initial value problem of the form  

 

)()(],,[),,()(' 240 == aandbattft  

 

where ′(t) = the derivative of  with respect to t;  = dependent variable of the function (t); t = 

independent variable of the function, (t), which is time here; f(t,) = some function of t and , 

which represents the slope of the function (t); a and b = real numbers representing the upper 

and lower limits, respectively, of the interval over which the function (t) is defined; 0 = the 

initial condition. Numerical approximation of the solution to this problem, at some point, tk+1, in 

the interval [a,b], with the Rung-Kutta method can be given as 
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In Eqs. 25 and 26, k = the numerical approximation of (tk); (tk) = exact value of  at t = tk;  

h = time step size (tk+1-tk); k = time step and data point index (0,1,2….); ci, di, and eij = are 

constant coefficients (parameters), that vary with the particular Runge-Kutta method; i = stage 

index; I = number of stages; and j = an index that vary between 1 and i-1, for the ith stage. In 

subsequent discussion, the term function will be used to refer to, (t), and f(t,) will be 

referenced as the slope function. For explicit Runge-Kutta methods eij = 0 for i ≤  j and the so 

called row sum condition states that for a given stage 
−

=

=
1

1

i

j

iji ed (Dormand, 1996), from which it 

follows that for an explicit Runge-Kutta method d1 =0.  The function i, Eq. 26, for i=1 to i=I 

can then be expressed as  
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Considering that the coefficient in Eq. 25 should meet the consistency condition
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(Dormand, 1996), it then follows that the summation term in Eq. 25 represents a linear 

combination of the slope functions (Eqs. 27-30) evaluated at suitably selected points over a time 

step. The number of those points and their location within a time step is a function of the number 

of stages and the parameters set. It then remains to determine the appropriate number of stages, I, 

and parameter combinations (ci, di, and eij), in order to obtain a numerical approximation of the 
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function, , with a Runge-Kutta method of a certain accuracy. An array of explicit Runge-Kutta 

approximations exists with different levels of accuracy and robustness (Stroud, 1974; Dormand, 

1996).      

 

Taylor series approximations and Runge-Kutta methods: As is the case with many numerical 

techniques, the Runge-Kutta method as well is based on Taylor series expansion (Mathewes and 

Fink, 2004; Burden, 1981; Dormand, 1996). The basic idea of Taylor series approximation is that 

if a function, (t), is differentiable to any desired order within an interval [a,b]; then given the 

function value at some point in the interval, (tk), its value at another point within the interval, 

(tk+1), can be approximated to a desired level of accuracy with the Taylor series, provided the 

step size, h, is sufficiently small. The Taylor series expansion of the function (t) about tk is 

given as 
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where k
(n) = the nth derivative of the function evaluated at t = tk and n! = the factorial of n. 

Provided the conditions described above are met, the accuracy of the Taylor method increases 

with the number of terms retained in the approximating power series. Noting that k′ =f(tk,k) 

(Eq. 24), the nth order Taylor series approximation to (tk+1), k+1, can be given as: 
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In Eq. 32 the term O(hn+1) represents the approximation error inherent in a Taylor method of 

order n, due to the truncation of terms of order n+1 and greater. Although an estimate of the 

global error over the entire interval of integration ([a,b], Eq. 24) is desirable, in numerical 

computation a practically more useful quantity is the error from each time step. Hence, the 

approach commonly used is to make sure that the error from each step, the local truncation error, 

is small and remains small (bounded) as the solution advances with time. Note that during each 

time step of a numerical computation, k+1 is computed based on k, which is only a numerical 
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approximation to (tk). In which case the error term in Eq. 32, O(h(n+1)), is not the same as the 

local truncation error, hence in subsequent discussions it is referred to as the local error instead 

of the local truncation error. Although the Taylor method is powerful, it is not often used in 

practice because of the requirement to compute and evaluate derivatives. Instead practically 

more useful methods like the Runge-Kutta, which do not require computation and evaluation of 

derivatives, are developed based on the Taylor series method.   

The format of the Runge-Kutta method applied to the solution of an initial value problem 

consisting of a single differential equation is presented above in Eqs. 25 and 26. The basic idea  

of deriving a Runge-Kuttta approximation of a given order consists of first expanding the right 

hand side of Eq. 25 with a Taylor method of an appropriate order about the point (tk,k), which 

yields an expression for k+1 in terms of f(t,), its derivatives, h, and the coefficients of Eqs. 25 

and 26. Then by matching the resulting expression with Eq. 32 (which is a Taylor series 

approximation to (tk+1), k+1, of an appropriate order, obtained by expanding the function (t) 

about tk) a system of equations relating the Runge-Kutta parameters (often termed as equations 

of condition) can be derived (Stroud, 1974; Cartwright and Piro, 1992). The solution of these 

equations (i.e., computation of the parameters) results in a Runge-Kutta approximation of the 

required order. It should be noted that a Runge-Kutta approximation of a given order is 

nonunique. However, some forms are practically more useful and hence commonly described in 

literature     

 The derivation of the  equations of condition and the computation of Runge-Kutta 

parameters for a second order approximation is relatively straight forward and is widely 

available (e.g., Mathewes and Fink, 2004; Burden et al., 1981), however, for higher order Runge-

Kutta methods the algebra is too involved hence it is presentation is limited to advanced 

literature, a concise description of the equations of condition and solution leading to a widely 

used form of the fourth order Runge-Kutta method is presented by Mathewes and Fink (2004). 

For many of the practically useful Runge-Kutta approximations the number of stages and 

corresponding parameter sets are computed and tabulated by experts and are widely available in 

the literature (Mathewes and Fink, 2004; Dormand, 1996; Burden et al., 1981; Stroud, 1974).  

The order of approximation of a Runge-Kutta formula is related to the number of stages, which 

in turn determines the number of function evaluations, and hence to a certain extent 
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computational efficiency of the method as well. For a nth order explicit Runge-Kutta method 

with n≤ 4, the minimum number of stages required is equal to the order of approximation of the 

Runge-Kutta method (Cartwright and Piro, 1992), however, for higher order methods the order 

of approximation is less than the minimum required number of stages. Perhaps partly because of 

this feature the fourth order Runge-Kutta methods are more commonly used in practice (Press et 

al., 1997).  

The main limitation in the Runge-Kutta method has been that it does not have an inherent 

local error estimation capability. The commonly used approach at error estimation and control is 

based on a comparison of two different Runge-Kutta estimates of the function over a time step. 

An earlier method consist of what is described as the step doubling approach, in which two 

function values computed by taking one full step and two half steps, within a given time steps 

size, are compared to produce a measure of the numerical error. However, the approach, for 

instance applied to a commonly used  fourth order Runge-Kutta method, requires eleven stages 

as opposed to the four stages discussed above, hence computationally inefficient. A commonly 

used and more efficient alternative is the so called embedded Runge-Kutta formulas, in which 

Runge-Kutta formulas of two different orders can be obtained based on the same (slope) function 

evaluations (Press et al., 1997). Then the difference between the two approximations is used as a 

measure of the local error. Another feature of these methods is that within the framework of error 

estimation, they have the capability to provide an estimate of the optimal time step size, to be 

used in subsequent computation, taking into account function local behavior. Hence such a 

method uses variable step sizes and is also referred to as adaptive step-size method.   

 

3.4.2 Adaptive step-size Runge -Kutta methods  

 

Description: Among the widely described  adaptive step size Runge-Kutta methods is those 

involving fourth-fifth order pair, discussed for instance by Press et al. (1997), Mathews and Fink 

(2004) and Burden et al. (1981). These particular approximations involve a fifth order Runge-

Kutta formula with six function evaluations, where some combination of the six functions yields 

a fourth order (Press et ̀al., 1997). The resulting Runge-Kutta pairs as applied to the numerical 

solution of Eq. 24, over the (k+1)th time step, can be given as 
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for the fifth order approximation, in which the local error, ε, is shown to be of order h6( h6), 
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for the fourth order approximation, where ε  h5. In Eqs. 33 and 34, k+1 and k+1
* = fifth order 

and fourth order function approximations, respectively, for the (k+1)th time step, h = the time 

step size, and ci and ci
* = parameters of the fifth and fourth order formulas, respectively. The 

expressions for the functions, i for i =1 to 6, is the same as that given in Eqs. 26-30. Note that 

estimates of the parameters di and eij (Eqs. 25 and 26) are the same for both Runge-Kutta 

approximations (Eq. 33 and 34).  

 

Error and step size estimation and control: From the preceding discussion it can be noted that 

an estimate of the local error, , over the (k+1)th time step can then be expressed as 

)(
* 3511 ++ −= nn   

 

It follows from the acceptance of a fourth order Runge-Kutta approximation that O(h6) <<O(h5) 

and hence   h5, then the error level over the current time step size is 

 )(h 365 =  

where λ = a constant. Although the step size, h, can in principle be kept constant, as described 

above an efficient method need to use variable steps in accord with local function behavior. If a 

local error tolerance, t, is specified, then an equation of the form given in Eq. 36 can be used to 

relate t with an approximation of the step size if the error level were to be exactly equal to t, ht. 

Combining the resulting expression for t with Eq. 36 and rearranging yields an expression for ht 

 )(

.

37

20









=



 t
t hh  

Equation 37 shows that if the ratio in the parenthesis exceeds 1.0, then the error level for the 

current time step is within the specified tolerance. Hence solution is acceptable. Furthermore, the 
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ht value computed as such would be greater than the current time step size, h, which is an 

indication of the fact that the local function behavior is such that a larger time step size can be 

taken without exceeding the local error tolerance. In which case ht can then be used as an 

approximation of the time step size. On the other hand, if the ratio on the right hand side is less 

than 1.0, it suggests that the error level exceeds the tolerance, hence solution is not acceptable. 

Once more ht, which in this case is less than h, provides an approximation of the step size with 

which the numerical computation for the current time step needs to be repeated. However, the 

implementation of a procedure that uses variable step sizes implies that the error tolerance, t, 

should also be variable as a function of step size, in order to keep the overall (global) error 

sufficiently small. An alternative is to scale t by the current time step size, ht, which results in a 

more stringent local error and step size control criteria. It should then be evident that when the 

expression ht is substituted, in Eq. 37, for t; the local error is no longer order five, hence the 

exponent 0.2 may not be exactly correct. However, Press et al., (1997) suggested the following 

practical modification to Eq. 37, which results in a more conservative estimate of the time step 

size 
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where S = a safety factor which is sufficiently close to, but less than 1.0. As described in the 

preceding paragraph, at any given time step Eq. 38 can be used for time step size and error 

control for a fifth order Runge-Kutta method with an embedded fourth order. In the following 

section the application of the method, described above, to a system of equations of the form 

given in Eq. 13-18 and Eq. 21 is presented. 
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3.4.3 Applications to the solution of a system of equations  

 

Problem description and numerical solution with an adaptive step size Runge-Kutta method:  

A generalization of the application of a fourth order Runge-Kutta method to a system of first 

order ordinary differential equations is presented by Mathewes and Fink (1999) and Burden et al. 

(1981) and is adopted here for the Runge-Kutta fifth-fourth order pair described above. Using 

vector notations the initial value problem given in Eqs. 13-18 and 20 can be expressed as  

 

  )()(,,f' 390 0 === tandt0  

where 

 

 )(,

z

V

y

V

x

V

and,

z

V

y

V

x

V

,

f

f

f

f

f

f

,

dt

dz

dt

dV

dt

dy

dt

dV

dt

dx

dt

dV

'

z

y

x

z

y

x

z

y

x

40

0

0

0

0

0

0

0

6

5

4

3

2

1



























=



























=



























=











































=  f  

In Eq. 40, f1, f2, ..., f6 = the right hand side expressions in Eqs. 13-18, respectively, and can be 

given as: 
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and it can be noted from Eq. 40 that the elements of 0 are the quantities defined in Eq 20. The 

explicit fifth order Runge-Kutta approximation of the solution to Eq. 39, for the (k+1)th time 

level, can then be expressed in vector form as  
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and the corresponding embedded fourth order approximation is given as  

 

)(F
** 431 +=+ kk   

 

where k+1 and k+1
* = vectors of the fifth and fourth order approximations, respectively, of  

(tk+1); k  = a vector of the fifth order approximation to (tk), Eq. 44. This implies that although 

the error is applicable to the fourth order approximation, the fifth order approximation is 

accepted as the solution for the (k+1)th time step (Press et al., 1997). In Eqs. 42 and 43, F and F* 

= vectors whose elements are  
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In Eq. 44, the elements of the vectors F, (F1,F2,…, F6 ), and F*, (F1
*,F2

*, . . . and F6
*), have the 

following form 
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In Eqs. 45 and 46, p = index of the differential equations (Eqs. 13-18), the sequence in which the 

index is used to identify the differential equations is given in Eq. 41. Noting that the number of  

stages for the Runge-Kutta fourth-fifth order pair is six, in Eqs. 45 and 46 I is set equal to 6.  

At the ith stage, the p,i function (Eqs. 45 and 46) is given as 
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where hk+1 = the (k+1)th time step size, i = a row vector whose elements are of the following 

form 

 

( ) )(.,..,,Δ ,,, 48621 iqiqiqi === =   
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where k,q = value of the qth element of the vector k  (Eq. 44), and ci, ci
*, di, and eij are 

parameters of the Runge-Kutta fourth-fifth pair. In Eq. 47, d1 = 0 and from Eq. 49 it can be noted 

that q,1 =  k,q for q = 1 to 6; in which case 1 = (k,1, k,2, . . ., k,6). Based on which the  

expression for p,i, in Eq. 47, for i = 1 to 6 can be given as:   
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Note that while the right hand side of Eqs. 47 and Eqs. 50-53 are more general and compact 

expressions, it is evident from Eqs. 13-18 only some of the ’s are pertinent for any given 

function. Noting that k,1 = Vxk; k,2  = xk; k,3  = Vyk; k.4 = yk; k,5 = Vzk and k,6 = zk and 

recognizing that for p = 1, 3, and 5 only k,1, k,3, and k,5  and for p = 2 only k,1, for p = 4 only 

k,3, and for p = 6 only k,5 are the pertinent variables in computingp.i; equations 50 – 53 can be 

expressed in terms of the variables of Eqs.13-18. For instance for i = 1, the functions p,1 can be 

given as   
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The expressions for p,2 can be obtained in terms of the functions given in Eq. 54, in accordance 

with Eq. 51, which can then be substituted in Eq. 52 to derive p,3, and the recursive processes is 

repeated till i = I. Once the functions p,i for each p and i are computed per Eqs. 50-53, they can 

then be substituted in Eqs. 45 and 46 and the results can then be used to compute the fifth and 

fourth order approximations to (tk+1) with Eqs. 42 and 43. Based on which the error vector can  

be computed. The error estimation and step size control approach implemented in the model 

described here is presented in the following section.   



 

 

46 

As mentioned above the constant parameters, ci, ci
*, di, and eij, are derived based on Taylor series 

approximation of the appropriate order. Although the resulting parameter set for a Runge-Kutta 

approximation of a given order are not unique, some result in a more efficient numerical 

approximations and better behaved error properties. The fourth-fifth order Runge-Kutta pair used 

in the solution of the system of equations describing sprinkler droplet dynamics (Eqs.  13-18) are 

those described by Press et al. (1997) and pertinent parameters for the Runge-Kutta pair are 

given in Table 1.  

 

Table 1 Parameters of the fifth order Runge-Kutta formula with an embedded fourth order approximation 

i = di eij ci ci
* 

1 0      

378

37
 

276488

2825

 
2 

5

1
 

5

1
     0 0 

3 

10

3
 

40

3
 

40

9
    

621

250
 

48384

18575
 

4 

5

3
 

10

3
 

10

9
−  

5

6
   

594

125
 

55296

13525
 

5 1  

54

11
−  

2

5
 

27

70
−  

27

35
−   0 

14336

277
 

6 

8

7
 

55296

1631
 

512

175
 

13824

575
 

110592

44275
 

4096

253
 

1771

512
 

4

1
 

       j =                     1 2 3 4       5 

  Note that the parameters are given in fractions rather than being approximated with decimals in order to minimize  

  computer rounding-off errors    

 

Error estimation and step size control: Using vector notation the estimate of local error levels, 

, for the nth time level can be given as 

)(δ
* 5511 ++ −= kk   

 

In principle the error tolerance level for each function should be different so as to take into 

account scale differences, in which case it should also be expressed as a vector (Eq. 55). 

However, in the current application the velocity and distance variables in Eqs. 13-18 are of the 

same order of magnitude, hence it is deemed that a single value of error tolerance, t, would be 

sufficient for use in step size and local error control. In the model described here, the most 
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limiting (i.e., the largest) of the error estimates, l, among those computed with Eq. 55 along 

with  the preset error tolerance level, t, is used to determine the acceptability of the numerical 

solution for the current time step and to compute the step size estimate for the subsequent time 

step with equations of the form given in Eq. 38: 
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Note that based on literature data (e.g., Burden et al., 1981), in the model described here the 

safety factor, S, is set to 0.84. In order to avoid numerical problems associated with a large 

change in time step size (e.g., Dormannd, 1996), the following constraint is imposed on the range 

of variations of ht as a function of hk+1: ht [0.1hk+1,10.0hk+1]. In the model described here the 

time step size is set to vary in the range 0.00005s to 0.1s, the initial time step size, h1, is set equal 

to 0.001s, and the error tolerance, t, is set equal to 0.0025. This implies that the allowable error 

at any given time step, say at the (k+1)th time step,  hk+1t, vary in the range: 1.2510-7 to 

2.510-6.  

The sprinkler precipitation distribution pattern simulation model described here is based 

on a numerical solution of the dynamics of motion of tens of thousands of droplets ranging in 

diameter from sub-millmeter (about 0.2mm) scale to a few millimeters, each of which are under 

taken over total number of time steps ranging from a few hundreds to a few thousands. This 

requires balancing the requirements of numerical accuracy with the need for having a robust 

model. In the model presented here this was accomplished as follows. First during the simulation 

of the motion of a droplet of a given diameter, if the error tolerance requirement is not met in a 

specified number of iterations the error tolerance is relaxed so long as the number of time steps 

that did not meet the requirement is within a preset percentage of the total number of time steps 

used in the simulation. Since time steps are variable and also the total time that a droplet, of a 

given diameter under a given set of conditions, requires to travel from the sprinkler nozzle to the 

field surface are unknowns, the number of time steps as well are not known a prior. However, 
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experience with the numerical solutions conducted with the model described here shows that the 

average time step size required for successful simulation decreases with the droplet size. 

Typically droplets with diameters in the order of one-fifth of a millimeter require a few thousand 

time steps, while those droplets with diameters in the order of a millimeter or larger require an 

order of magnitude lower number of time steps. Hence, in the model described here the number 

of time steps over  which the error tolerance can be relaxed is internally set based on droplet 

diameters, in such a way that on average they remain approximately within 1.5% of the total 

number of time steps. In addition, the simulation of sprinkler precipitation distribution pattern 

requires simulating the dynamics of tens of thousands of droplets, in which case a few of the 

simulations would likely be incomplete. Discarding an entire simulation, because of a few 

incomplete simulations would severely restrict the robustness of the model. Hence, in the current 

model the requirement is that a solution is accepted if 0.1% of the total number of simulations (of 

droplet motion) is incomplete and if the number of unsuccessful consecutive simulations does 

not exceed five. When the simulation of the motion of a droplet is incomplete, it is destination on 

the field surface is set to that of a preceding droplet whose motion is successfully simulated.  

 

3.5 Flow chart and computational procedure  

A simplified flow chart of the droplet dynamics component of the sprinkler precipitation 

pattern simulation model is presented in Figure 3. Considering the (k+1)th time step and the ith 

stage, the first phase of computation concerns the determination of the elements of the row  

vector, i, with Eq. 49. It is then followed by the calculation of the slope functions p,i (for p = 1 

through 6), with Eq.47. These steps are repeated for stages i =1 through 6. Based on which the 

fifth and fourth order approximations to (tk+1), the associated local error estimate, and the 

adjusted step size are computed. If the computed local error exceeds the error tolerance, solution 

is unacceptable, hence a revised approximation to(tk+1) is computed based on the adjusted step 

size. On the other hand, if the computed local error is less than the error tolerance, then the fifth 

order approximation vector is accepted and the solution advances to the next time step. The same 

process is then repeated till the water droplet reaches the field surface. The following is a 

summary of the computational steps involved (given the initial conditions, droplet diameter, and 

error tolerance along with other pertinent data, presented in Section 6.1). 
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Specify input data including droplet 

diameter, d, initial condition, 0, 

error tolerance, t; set time level 

index, k = 0, initial step size, hk+1

Specify input data including droplet 

diameter, d, initial condition, 0, 

error tolerance, t; set time level 

index, k = 0, initial step size, hk+1

Set func. eval. Index (Eqs. 45 & 46), i =1 Set func. eval. Index (Eqs. 45 & 46), i =1 

Set the index q = 1 (Eqs. 48 & 49)Set the index q = 1 (Eqs. 48 & 49)

Compute i with Eq. 49Compute i with Eq. 49

 q < 6? q < 6?

q = q+1q = q+1

Compute Pi with Eq. 47Compute Pi with Eq. 47

Compute F and F* with Eqs. 45 and 46Compute F and F* with Eqs. 45 and 46

Y

N

N

Y

 p < 6? p < 6?

 i < 6? i < 6?

Compute k+1 and k+1* with Eqs. 42 and 43Compute k+1 and k+1* with Eqs. 42 and 43

 l ≤  hk+1t ? l ≤  hk+1t ?

Solution is the fifth order approximation to (tk+1), k+1 Solution is the fifth order approximation to (tk+1), k+1 

Droplet z 

coordinate ≤ Droplet 

diameter?

Droplet z 

coordinate ≤ Droplet 

diameter?

Droplet trajectory, 

velocities, and 

destination on the field 

surface are computed

Droplet trajectory, 

velocities, and 

destination on the field 

surface are computed

End computationEnd computation

Y

N

N

Y

N

Yk = k+1k = k+1

hk+1 = ht hk+1 = ht 

Start computationStart computation

p = p+1p = p+1

i = i+1i = i+1

Set the diff. equation index (Eqs. 45 & 46), p = 1Set the diff. equation index (Eqs. 45 & 46), p = 1

Compute  , l , & ht, with Eqs. 38,55, &56Compute  , l , & ht, with Eqs. 38,55, &56

hk+1 = hthk+1 = ht

 
 

                Figure 3 Simplified flow diagram for the droplet dynamics submodel (Runge-Kutta approximation)
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(1) Set time step index: k = 0;  

(2) Set stage index: i=1;  

(3) For q=1 to 6 Compute elements of i with Eq. 49;  

(4) For p=1 to 6 Compute p,i with Eq. 47; 

(5) If  i < 6 then set i = i+1 and go through steps 3 and 4 above, if not then proceed to step 6; 

(6) Compute k+1 and k+1
* with Eqs. 42-43 and determine l and ht (Eqs. 55 and 56) and proceed 

to  step 7 

(7) If error tolerance requirement is met (l ≤ htt), then solution for the (k+1)th time step is  

obtained and it is k+1; proceed to the next step. If, on the other hand, htt < l then solution 

is unacceptable, set hk+1= ht and repeat steps 2 through 6 above; 

(8) If droplet coordinate along the z-axis (droplet height above the field surface) is less than  

 droplet diameter, then droplet has reached the irrigated field surface, end computation. If, on   

 the other hand, droplet height above field surface exceeds droplet diameter, then set k = k+1    

 and hk+1=ht and proceed through steps 2 to 7 above;   

 

For a droplet undergoing unsteady motion under wind, if the horizontal component of the droplet 

absolute velocity vector falls to or below a threshold value (taken here as 1% of the wind speed), 

then the horizontal component of the droplet absolute velocity is considered to have been 

completely dissipated and thereafter the droplet is assumed to be fully carried by the ambient air 

(i.e., no relative motion between droplet and ambient air on the horizontal plane). In which case 

the derivatives of the velocity vectors along the x- and y-axes are set to zero and the horizontal 

velocity components are given as Vx = Wx and Vy = Wy. The incremental distances covered by a 

droplet in a given time step, along each axes, can then be computed as the product of the time 

step size and Vx and Vy. Vertical droplet motion, however, is computed in accordance with the 

procedure described above. 
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Chapter 4 Sprinkler droplet volumetric application rate computation and precipitation  

                  pattern simulation                                                                                                       

 

4.1 Introduction  

The precipitation pattern about a sprinkler can be emulated only with numerous droplets 

of known diameters and application rates. Given the droplet diameter, the initial conditions, 

pertinent physical properties of the ambient air, wind velocity, and model parameters (Section 

3.3), the droplet dynamics model presented in the preceding sections can simulate the trajectory 

that a water droplet takes and its landing coordinate on the irrigated surface. However, because 

of the limiting assumptions inherent in the droplet dynamics modeling framework (Section 2.4), 

the output of such a model cannot provide answers to such questions as what is the droplet 

diameter range applicable to a given sprinkler, nozzle pressure head, and environmental 

condition combinations? What is the volumetric application rate associated with a given droplet 

diameter? How many droplets are needed to provide a satisfactorily accurate simulation of the 

spatial distribution of precipitation about a sprinkler? Evidently, a sprinkler irrigation 

precipitation pattern simulation model is more than a droplet dynamics model. Hence, additional 

numerical and empirical procedures need to be devised, and coupled with the droplet dynamics 

submodel, in order to transform it into a mathematical model capable of simulating irrigation 

precipitation pattern about a sprinkler.  

The approach commonly used for constructing a sprinkler irrigation precipitation pattern 

simulation model, with a physically based droplet dynamics model at its core, consists of three 

main phases (Fukui et al. 1980; von Bernuth and Gilley. 1984; Vories et al., 1987; Seginer, et al. 

1991; and Carrion et al., 2001; Playan et al., 2009): (i) Computation of droplet volumetric 

application rates: consisting of a semi-empirical procedure aimed at ascertaining droplet 

diameter range, number of droplets, and droplet volumetric application rates;  (ii) Model 

calibration: model calibration concerns the estimation of model parameters based on a 

comparison of field measured precipitation distribution data about a test sprinkler with that 

obtained through simulation; and (iii) Sprinkler precipitation pattern simulation: based on results 

from steps i and ii above, precipitation distribution over an area irrigated by multiple overlapping 

sprinklers, under field condition, can be simulated. In subsequent sections, first a detailed 

discussion of the basic principles and assumptions underlying the approach described above is 
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presented, followed by a step by step account of the specific procedure implemented in the 

model presented here.       

 

4.2 Assumptions and rationale  

 

4.2.1 Droplet volumetric application rate based on indoor measurements 

 The application rate over the wetted area of a sprinkler can be considered constant with 

time (by the steady state flow assumption) and is equal to the sprinkler discharge. The procedure 

for computing droplet volumetric application rates then aims at answering the simple question of 

how to parcel out the sprinkler application rate over its wetted area among a finite number of 

droplets, the landing coordinates of which can be computed with the droplet dynamics model?  

Because of the simplifications inherent in the droplet dynamics model, consideration of the 

actual processes by which droplets form and spatially distribute about a sprinkler on real-time 

basis is not possible and the volumetric water content of individual droplets used in the 

simulation, perse, is not practically useful. Hence, droplet volumetric application rates are 

computed with a semi-empirical procedure based on data derived through a mix of modeling and 

measurements conducted under no-wind condition (typically indoors). The main steps consist of: 

(i) Determining the “optimal” number of droplets required to cover the sprinkler wetted area 

such that the resulting application rate data has sufficiently high spatial resolution to capture the 

nonuniformity inherent in the precipitation distribution about a sprinkler while at the same time 

keeping computational effort to a minimum; (ii) Computing the radial landing coordinates of 

droplets with the droplet dynamics model, and (iii) Correlating the droplet landing coordinates 

with measured radial irrigation application rate data to compute droplet volumetric application 

rates.  

The radial application rate of a sprinkler (Figure 4a), expressed in depth per unit time, is 

obtained through measurements conducted in indoor settings in which a sprinkler, of given 

model and nozzle size, is operated at a preset pressure head for a selected duration under 

conditions that minimize spray evaporation (e.g., Carrion et al., 2001; Vories et al., 1987; von 

Bernuth and Gilley, 1984). Precipitation depths collected in rain gages placed at a regular 

spacing from the sprinkler along with the duration of irrigation is then used to compute the 

sprinkler radial application rate. The layout of the indoor radial application rate measurement 
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Figure 4 (a) Measured radial sprinkler application rate and (b) Annular ring of irrigated  
        areas representing the radial discretization of the wetted area under the sprinkler  

        (where ri = the radial distance, measured from sprinkler location to, the landing  

        point on the irrigated surface of the ith droplet diameter; Ri = the radius of the ith  

        concentric circle delineating the ith annular ring of irrigated area from the (i+1)th) 

 

setup, used in the study reported here, is described in Section 6.3.1. A limitation that stems from 

this empirical approximation is that, in the strictest sense, the droplet volumetric application rates 

computed as such can only be applied to a condition in which the sprinkler model, nozzle size, 

and operating pressure head are the same as that used  during the sprinkler radial application rate 

measurement. In practice, however, they can be applied to a set of overlapped sprinklers (of 

same model and nozzle size) with limited pressure head variation about that used in the 

application rate measurement.    

Subsequent section discusses the steps listed above, for computing droplet volumetric 

application rate, in some detail. 

   

Determination of number of droplets: Considering a full-circle impact sprinkler (commonly used 

in solid set sprinkler systems), determination of the number of droplets for precipitation pattern 

simulation requires discretization of the unit circle about the sprinkler into subintervals of equal 
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size with a suitably selected angular discretization step, θhx0 (Figure 4b). Each angular 

discretization step corresponds to a sprinkler nozzle setting, which is specified in terms of the 

associated horizontal angular displacement of the centerline of the sprinkler nozzle from a 

reference axis, hx0. In the model described here the positive x-axis is used as a reference axis to 

measure the angular setting of the sprinkler nozzle (Figure 5). For a given set of conditions and 

angular setting of the sprinkler nozzle, the measured radial application rate can be related to a 

range of droplet diameters. The upper bound of the droplet diameter range, dmax, can be 

computed, with the droplet dynamics model, as a function of the wetted radius of the sprinkler 

measured under no-wind condition. The minimum droplet diameter, dmin, is set based on 

computational considerations: numerical efficiency and robustness (Section 3.4.3). The droplet 

diameter range, [dmin,dmax], defined for a given angular setting can then be discretized with a 

suitably selected step size, d, resulting in a finite number of droplet diameters. Noting that 

droplet application rate characterization measurements are conducted under no-wind condition, 

the measured radial application rate can be considered symmetrical about the sprinkler. In which 

case, the same set of droplet diameters can be used to represent the measured radial irrigation 

application rate, about the sprinkler, for each of the sprinkler nozzle angular settings which vary 
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         Figure 5 Angular setting of sprinkler nozzle from the reference axis, hx0, and sprinkler  

                        vertical tilt angle, ,  
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in the range: 00≤hx0<3600. The implication is that the number of droplets covering the full-circle 

about a sprinkler can be given as the product of the number of angular discretization steps and 

the number of droplet diameters in the range [dmin,dmax]. Note that this is the number of droplets 

used in simulating the precipitation pattern about a sprinkler under field condition. In selecting 

the appropriate step sizes for angular and droplet diameter discretization, computational 

considerations and the grid square size used to discretize the irrigated field surface (to be 

discussed in a subsequent section) need to be taken into account. 

 

Computation of droplet landing coordinates and discretization of the wetted area about the 

sprinkler: Considering a given angular setting of the sprinkler nozzle, the radial landing distance 

of each droplet, in the range [dmin,dmax], on the irrigated field surface can be computed with the 

droplet dynamics model. The wetted area about the sprinkler, which is a circle, can then be 

discretized radially into concentric annular rings of irrigated areas, such that each annular ring 

area contains the landing point of a droplet of given diameter (Figure 4b). Superimposing the 

sprinkler nozzle angular settings on the radially discretized sprinkler wetted area yields elemental 

wetted areas (henceforth referred to as grid units) into which the wetted area about the sprinkler 

is subdivided for droplet volumetric application characterization purpose. Note that the total 

number of droplets, applicable to any given set of conditions, is equal to the total number of grid 

units. In other words, each grid unit of wetted area can be associated with the landing point, in 

the irrigated field surface, of a water droplet. In which case, the determination of droplet 

volumetric application rates can be reduced to apportioning the sprinkler application rate among 

the individual grid units constituting the wetted area of the sprinkler. This is the basic rational 

underlying the approach used for apportioning sprinkler application rates among droplets, 

however, recognition of the fact that the measured radial application rate is symmetrical about 

the sprinkler leads to a considerable simplification of the procedure used for computing droplet 

volumetric application rates.      

 

Correlating droplet landing coordinates with a sprinkler radial application rate: Considering the    

symmetry of application rate about the test sprinkler, it can be reasoned that the computation of 

droplet volumetric application rate requires only correlating the measured radial application rate 
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of the sprinkler with the droplet radial landing distances, computed for any arbitrarily selected 

angular setting of the sprinkler nozzle. From the preceding discussion it can be noted that each 

annular ring of irrigated area about the sprinkler contains a droplet landing point, to which an  

application  rate can be assigned. If the radial discretization of the sprinkler wetted area (Figure 

4) is of sufficiently high spatial resolution, then the width of each annular ring of irrigated area 

can be assumed sufficiently small for the associated application rate to be considered a 

representative average. In which case the volumetric application rate for an annular ring of 

irrigated area can be computed as the product of the application rate, at the landing point of the 

associated droplet, and the area of the annular ring. Because the angular discretization step size is 

constant, it then follows that the grid units within each annular ring of irrigated area are of equal 

size. In which case the volumetric application rate associated with a droplet, of a given diameter, 

can be computed as the ratio of the volumetric application rate over the corresponding annular 

ring of area to the number of angular discretization steps.  

 

4.2.2 Model calibration based on field measurements 

 Often sprinkler systems are operated under wind with velocities within a range 

considered conducive for the attainment of a satisfactory level of system performance. As 

described by Zerihun and Sanchez (2014b) wind is considered here as a steady uniform 

horizontal air flow. Hence, in effect the wind velocity is an average value over the duration of 

irrigation, or some faction of it, in the surface layer of the atmosphere where water droplet 

motion takes place. Wind direction is defined here in terms of wind vector azimuth, an angle 

measured in the clockwise direction from the positive y-axis (Figure 5) to the wind velocity 

vector. The effect of wind on irrigation precipitation pattern operates at two levels (Section 

2.4.2). It distorts the trajectories and landing coordinates of individual droplets (compared to an 

equivalent no wind condition) and also it affects the physical processes of liquid jet breakup and 

droplet size distributions (e.g., Kohl, 1974), by modifying the relative velocity of the water jet 

with respect to the ambient air. However, given the simplifications inherent in the droplet 

dynamics model, a rigorous and explicit accounting of these effects within the modeling 

framework described here for sprinkler applications is unwarranted. Hence, the established 

approach for modeling wind effects on precipitation pattern about a sprinkler assumes that: (i) 
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the droplet volumetric application rates derived based on measurements under no-wind condition 

are applicable to the test sprinkler under field conditions as well (Carrion et al., 2001; Seginer et 

al., 1991; Vories et al., 1987; Fukui et al., 1980) and (ii) the effect of wind on precipitation 

distribution can be taken into account with empirical shape fitting parameters derived based on 

field measured precipitation pattern about a test sprinkler (Playan et al., 2009; Carrion et al., 

2001; Seginer et al., 1991). Note that this is in addition to wind effects on the relative velocity 

vector. The term test sprinkler refers here to a sprinkler of the same model, nozzle size, and 

operating pressure as that used in the (indoor) sprinkler radial application rate measurement. In 

the following section a description of the approaches used to quantify precipitation rates, depths, 

and estimation of model parameters is presented.   

 

Discretization of irrigated area: In order for the computed droplet volumetric application rates to 

be practically useful (in the context of precipitation pattern simulation under field conditions) 

they need to be related with an elemental area (e.g., a grid square) of known coordinates on the 

irrigated field surface (e.g., Vories et al., 1987). In which case, the irrigated field needs to be 

discretized into grid units of appropriate size. The discretization scheme described above, in 

relation to the computation of droplet volumetric application rates, is difficult to work within the 

context of simulating the spatial distribution of sprinkler applied irrigation water, especially 

under conditions involving multiple overlapping sprinklers, hence will not be considered further. 

A simple discretization scheme amenable to such an application consists of subdividing the 

irrigated area into grid squares of constant size (Figure 6). Note that in the model described here 

the field surface is considered horizontal (based on the assumption of a nearly flat field surface).  

For a given irrigated area, the grid square size used to discretize the irrigated field 

determines the spatial resolution with which precipitation distribution is computed. However, in 

selecting the grid square size, consideration needs to be given to the fact that smaller grid squares 

can yield precipitation distribution data with higher spatial resolution only if the droplet diameter 

and angular discretization steps as well are sufficiently small, which entails higher computational 

costs. On the other hand, too large a grid size may mask the nonuniformities inherent in the 

irrigation precipitation distribution, and perhaps result in a wasted computational effort if it is  
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   Figure 6 Discretization of the irrigated field surface for sprinkler irrigation precipitation  

     distribution computation (x and y = horizontal coordinate axes which represent  

     distances on the field surface and z = the vertical coordinate, which represents  

     applied irrigation depth or precipitation rate, x and y = grid dimensions) 

 

coupled with very fine droplet diameter and/or angular discretization. Hence, droplet diameter, 

angular, and field discretization steps should be selected with the view of balancing the need for 

computational efficiency with the need for adequate spatial resolution of the computed irrigation 

distribution.  

 In order to simulate the precipitation pattern about a sprinkler under field condition, the 

sprinkler nozzle is rotated through each of the preselected angular settings, which vary in the 

range: 00≤hx0<3600, and for each nozzle setting the landing coordinates (as affected by wind) of  

the droplets ranging in diameters between dmin and dmax are computed. The application rate 

within a grid square (expressed in terms of depth per unit time) is then computed as the sum total 

of the contribution of each droplet that landed within or on the edges of the grid square.  

 Obviously, for practical computational purposes the motion of individual droplets is 

simulated separately and consecutively. However, it is important to note that the chronology of 

droplet motion in the droplet dynamics modeling framework does not in any way correspond to 

the actual process of droplet motion in real-time; hence it is impertinent to the computation of 
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application rates associated with grid squares. In other words, in so far as sprinkler precipitation 

pattern simulation is concerned, the significant output of the droplet dynamics simulation is the 

computed landing points of the droplets whose volumetric application rates are known. The 

practical implication of the preceding observations is that the aggregate contribution of water 

droplets that landed within or on the edge of a grid square, to the application rate over a grid 

square, is considered to have occurred within a suitably selected unit real-time scale, used for the 

quantification of application rates in the model (i.e., a second, a minute, etc.).   

  

Wind drift and spray evaporation losses: Computed droplet volumetric application rates do not 

take into account spray evaporation losses and evidently wind drift losses are considered zero. 

However, simulation of sprinkler irrigation precipitation pattern under field conditions requires 

quantification of spray evaporation and wind drift losses, based on which the grid square 

application rates are to be adjusted. Wind drift and spray evaporation losses, often expressed as 

percentage of the sprinkler average application rate, can be computed as function of pertinent 

climatic factors (e.g., Playan et al., 2005). Alternative approaches for taking into account spray 

evaporation and wind drift losses in the context of a sprinkler irrigation precipitation pattern 

simulation model is described by Carrion et al. (2001). In the model described here spray 

evaporation and wind drift losses are considered separately. Spray evaporation loss is not 

explicitly computed within the model, instead it is specified at the input as a fraction of the 

irrigation application rate. In addition, an irrigation event is considered to take place within a 

defined field boundary specified at the input. Hence, droplets that fall outside the irrigate field or 

on the edge of the irrigated field are considered to contribute to wind drift loss. Evidently some 

of the water that becomes wind drift loss evaporates before it reaches the field surface, however, 

in this model no distinction is made between the wind drift loss and the fraction of it that 

becomes spray evaporation loss. Spray evaporation fraction of the irrigation application is 

estimated with a volume balance approach based on field measured data (Section 6.3.1). 

Eventually the application rates for each of the grid square, within the irrigated field, are 

corrected for spray evaporation losses.  

Note that the preceding discussion implies that field data, applicable to the calibration of 

the model described here, should have a precipitation pattern (sprinkler wetted area) that is 
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entirely circumscribed by the boundary of the test-plot. Hence, the test-plot size and the location 

of the sprinkler within it should be defined taking this requirement into account. 

  

Computation of irrigation depths reaching the irrigated field surface: The application rates 

computed for each grid square, after having been adjusted for spray evaporation losses, can then 

be integrated over the duration of irrigation to yield the irrigation depth reaching a grid square.  

 

Estimation of model parameters: In the model described here pertinent parameters consist of 

scale factors for wind effects on drag, ζ1, and droplet drift, ζ2, and empirical drag correction 

parameter for acceleration effects, ζ3 (Eqs. 13-18). Ideally the model parameters should be 

estimated through inverse modeling, such that the difference between the field measured and 

computed precipitation patterns about a test sprinkler, expressed in terms of some selected error 

measure, is minimized. Seginer et al. (1991) and Carrion et al (2001) have discussed applicable 

procedures for estimating pertinent parameters to their models. The model developed here has no 

inverse modeling functionality, hence model calibration is conducted through trial and error 

based on comparisons of model predicted and field measured precipitation patterns about a 

single sprinkler. The layout of the precipitation pattern measurement apparatus used in the single 

sprinkler field evaluations conducted in the current study is described in Section 5.3.2.  

 

4.2.3 Sprinkler precipitation pattern simulation under field conditions 

 Sprinkler precipitation pattern simulation under field condition concerns the computation 

of the distribution of irrigation applied water over an area irrigated by a set of overlapped  

sprinklers. In which case, precipitation distribution computation requires overlapping the patterns 

from adjacent sprinklers whereby each grid square may receive water from more than one 

sprinklers. A simple approach involves applying the precipitation pattern obtained for a single 

sprinkler to all the sprinklers in a set. This is based on the assumption that the sprinklers are of 

the same model, nozzle size, and are operated at pressure heads not significantly different from 

that used in the sprinkler radial application rate measurement. The approach is computationally 

efficient, and in theory, rather consistent with the principle underlying the computational 

framework described above. An alternative procedure implemented in the current model, 



 

 

61 

because it does not require additional programming effort, involves the simulation of the 

precipitation pattern distribution about each sprinkler in the set based on the operating pressure 

head of the individual sprinklers, in which case the initial conditions would be slightly different 

from one sprinkler to another in the set. Both approaches should give more or less the same 

results so long as sprinkler pressure head variation within the set is limited to a narrow range 

about the pressure head used in the radial application rate measurement. Note that if the range of 

field-scale sprinkler pressure head variation is considered significant to be represented in terms 

of a single radial application rate dataset, then measurements need to be made at more than one 

sprinkler pressure heads, spanning the field-scale variation. Droplet volumetric application rates 

should then be derived for each one of them.       

 

A detailed outline of the specific procedures implemented in the model described here is 

presented subsequently. Following the discussion above, the presentation is divided into two 

segments. The first segment outlines the steps for computing the droplet volumetric application 

rates based on sprinkler radial application rate patterns derived through indoor measurements 

(Figure 7). The second segment lists the steps used for simulating the spatial distribution of 

precipitation about a sprinkler or multiple overlapping sprinklers irrigating a field under a steady 

uniform horizontal wind (Figure 8).  

 

4.3 Computational procedures  

 

4.3.1 Droplet volumetric application rates  

 

(1) Determine the sprinkler radial application rate. The radial application rate of a sprinkler is 

obtained through measurements conducted in indoors settings in which a sprinkler, of given 

model and nozzle size, is operated at a preset pressure head for a selected duration under 

conditions that minimize spray evaporation. Precipitation depths collected in rain gages placed at 

a regular spacing from the sprinkler along with the duration of irrigation is then used to compute 

the radial sprinkler application rate; 
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               Figure 7 Flow diagram for droplet volumetric application rate computation  
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(2) Determine droplet diameter range [dmin,dmax]: The maximum droplet diameter, dmax, is 

computed with the droplet dynamics model as a function of the measured wetted radius and  

the minimum droplet diameter, dmin, is set based on computational considerations:  

numerical efficiency and robustness;  

 

(3) Discretize the droplet diameter range: A suitably selected step size, d=(dmax-dmin)/I (where I 

= the number of subintervals into which the droplet diameter range is subdivided), is used to 

discretize the droplet diameter range into subintervals of constant size;   

 

(4) Radial distance of droplet landing point from sprinkler: For each droplet diameter, di (for  

i = 1,2,…,I+1), within the range [dmin,dmax], compute the horizontal distance, ri, between the 

sprinkler and the point at which the droplet lands on the field surface (Figures 4) with the droplet 

dynamics model; 

 

(5) Radial discretization of the wetted area about the sprinkler: Discretize the wetted area about  

the sprinkler into concentric annular rings of irrigated areas, such that each annular ring area 

contains a droplet landing point. In the model described here, the radius of the ith circle, Ri, 

which delineates the ith annular ring of irrigated area from the (i+1)th is computed with  
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Note that radial discretization of the wetted area presumes that for a condition in which there is 

no-wind, precipitation distribution is symmetrical about the sprinkler; 

 

(6)Volumetric application rates for each annular ring area: The volumetric application rate  

over the ith annular ring of irrigated area, qr
i [L3/T], based on the measured radial application 

rate, can then be computed with     

   

( ) )(ARRq i
rii

i
r 582

1
2

−−=   

where Ar
i = irrigation application rate at the landing point of the ith droplet [L/T]. Ar

i can be 

interpolated from the measured radial application rate data or can be computed from a curve 

fitted to the measured data. In the current model it is computed from a radial irrigation 
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                    Figure 8 Sprinkler precipitation pattern simulation under field condition  
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application rate curve obtained through curve fitting. Note that Eq. 58 presumes that the radial 

discretization of the sprinkler wetted area is such that the width of each annular ring of irrigated 

area is sufficiently small for the associated qr
i to be considered a representative average;  

 

(7) Volumetric application rate over the wetted area about the sprinkler: The volumetric  

application rate over the wetted area about the sprinkler, qw [L3/T],  based on the measured radial 

application rate can be computed with  
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(8) Dimensionless radial distribution of volumetric application rate:  For the ith annular ring of  

irrigated area, the dimensionless radial distribution of volumetric application rate, normalized 

with qw, Pr
i [-], can then be expressed as:  
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(9) Specific discharge: The specific discharge, qs
i, which is the fraction of the sprinkler  

discharge, qs, that would be applied to the ith annular ring of irrigated area, if there was no 

evaporation, can be expressed as   
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Note that Eq. 61 assumes that the rate of spray evaporation loss is invariant with distance from 

sprinkler and is equal to the ratio of the evaporation depth to the total applied irrigation depth. 

Note that maintaining a condition that minimizes spray evaporation during the indoor sprinkler 

test would improve the accuracy of Eq. 61.  

   

(10)  Compute droplet volumetric application rates: In accordance with the discussion in the 

preceding section, the droplet volumetric application rate, qd
i, for the ith droplet in the range 

[dmin, dmax] can be computed with: 
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The droplet volumetric application rates computed with Eq. 62 can then be used to simulate  

the distribution of irrigation applied water over a wetted area about a sprinkler, or a set of 

overlapping sprinklers, under field conditions.  

 

4.3.2 Spatial distribution of sprinkler irrigation                                                 

 

(1) Model calibration: As mentioned above, model calibration here concerns the estimation of  

parameters of the droplet dynamics model, consisting of scale factor for wind effects on drag, ζ1,  

and droplet drift, ζ2, and an empirical drag correction parameter for acceleration effects, ζ3. The 

model described here has no inverse modeling functionality, hence model calibration is conduct 

though trial and error. Model calibration is based on precipitation distribution data collected 

through a single sprinkler field test. The field evaluation uses the same sprinkler and operating 

pressure as that used in the indoor tests. In the model described here, wind velocity vector can be 

specified in terms of hourly average data during the course of the irrigation event or as an 

average value over the entire irrigation application period. The advantage of using hourly 

average wind speed and direction is that wind effects on precipitation pattern can be specified at 

much higher temporal resolution. However, when hourly average wind velocity data is used the 

parameter sets for each hour of the irrigation duration may not be the same. Hence, the increase 

in the number of model parameters will lead to increased complexity in parameter estimation. In 

addition, precipitation distribution for each hour of the irrigation duration need to be simulated 

separately, resulting in increased computational time by a factor equal to the number of hours in 

a test irrigation.  

 

(2) Set a rectangular coordinate system: The coordinate system should be selected such that the 

sprinkler (in case of single sprinkler simulation) or the field (in case of overlapped sprinkler 

simulation) is located in the first quadrant of the horizontal plane of the coordinate system (e.g., 

Figure 6). This is not necessary, but it is a simple setup implemented in the current model;  
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(3) Discretize the irrigated field surface into grid squares of equal size: Select a suitable grid  

square size for irrigation application rate and depth computations and discretize the field surface 

as shown in Figure 6. Factors that need to be considered in selecting grid square dimension are 

discussed in the preceding section; 

 

(4) Compute droplet landing points: For a given angular setting of the sprinkler nozzle compute 

the landing coordinate of each droplet diameter, di, with the droplet dynamics model (for i = 

1,2,…, I+1, where I = the number of subintervals into which the droplet diameter range, 

[dmin,dmax], is discretized); 

 

(5) Assigning droplet volumetric application rates to grid squares: Considering the same  

sprinkler nozzle setting as that used in step 4 above, the volumetric application rate, qd
i, of the ith 

droplet diameter, di (for i=1,2,….I+1), is apportioned between grid squares as follows (e.g., 

Carrion et al., 2001): (i) If a droplet lands within a grid square (Figure 6), the entire application 

rate it represents is assigned to that grid square; (ii) If the droplet lands on a line separating two 

adjacent grid squares then, half the application rate associated with the droplet will be assigned 

to each of the respective grid square; (iii) If the droplet lands on a corner shared by four adjacent 

gird squares, then each quarter of the  application rate associated with the droplet will be 

assigned to each of the respective grid squares; (iv) If a droplet lands outside the edge of a field 

specified at the input, then its considered to be part of the wind drift losses; (v) If a droplet lands 

on the edge of the field, then the droplet volumetric application rate is divided between the 

respective grid squares and the wind drift loss following the  procedure described in steps ii 

through iv above;      

 

(6) Updating the application rate in a grid square: Considering a droplet of diameter, di, which  

contributes some fraction of its volumetric application rate to a grid square, the application rate 

for the grid square is then updated as follows: add the fraction of the droplet volumetric 

application rate applicable to the grid square to the antecedent application rate in the grid square. 

The antecedent application rate in a grid square is the sum total of the contributions of droplets, 

whose motion was simulated a priori, to the irrigation application rate in the grid square;  
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(7) Change sprinkler nozzle setting and repeat preceding steps: Rotate the sprinkler to the  

desired angular setting with respect to a reference axis (given as ((j-1)hx0)
o for  j = 1,2,…,J, 

where J = the number of angular discretization steps, J = 3600/hx0) and repeat steps 4 through 

6 above. Note that the direction of rotation of the sprinkler used in the current model is counter 

clockwise; 

 

(8) For a set of overlapping sprinklers repeat preceding steps: The contribution of each  

sprinkler, in the overlapped set, to the spatial distribution of irrigation application rate over the 

irrigated area is computed by repeating steps 4 through 7 above. Computation in the preceding 

steps is based on a single droplet volumetric application rate dataset, hence consideration of 

overlapped sprinklers here presumes that sprinkler pressure heads in the set are not significantly 

different from the pressure head used in the indoors sprinkler test.  

 

(9) Evaporation rate adjustment: In the model presented here evaporation rate is specified at the 

input as a fraction of the irrigation application rate. For each grid square the application rate  

computed above is adjusted by subtracting an amount equal to the evaporation fraction specified 

at the (model) input. Determination of spray evaporation losses based on field measured data is 

described in Section 6.3.2.   

 

(10) Wind drift losses: Droplets that fall outside the field or on the edge of the field contribute to 

the wind drift losses. However, it should be noted that such losses can occur, even when wind 

velocity is zero, if sprinklers are placed sufficiently close to the edge of the field. In the model 

described here no distinction is made between the wind drift loss and the fraction of it that 

contributes to the overall spray evaporation loss. Note that for computational purposes the entire 

wind drift loss is considered to be contributing to a single grid square of the same size as that  

used to discretize the irrigated field. This implies that the model does not keep track of the spatial 

distribution of wind drift losses;   
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(11) Compute applied irrigation depth for a grid square: Noting that irrigation application is 

considered steady, for each grid square applied irrigation depth is computed by multiplying the 

duration of irrigation with the application rate for the gird square;   

 

The sprinkler precipitation pattern simulation model described here is not yet coupled with a 

field-scale hydraulic model. However, it is capable of simulating the distribution of irrigation 

application resulting from multiple overlapped sprinklers over a limited area, if the pressure 

heads for each of the sprinkler in the set is specified at the input. In its current form the model 

can only utilize a single measured radial irrigation application rate data, hence sprinkler pressure 

heads cannot be significantly different from the pressure head used in the single sprinkler indoors 

test. In any case it should be noted that this model functionality is designed only to explore the 

potential application of the precipitation pattern simulation model in field-scale solid set 

sprinkler irrigation system performance evaluation. Assuming sprinkler application rates are less 

than the soil intake rate, a simple root-zone water balance functionality (based on the field 

capacity approach) is incorporated into the model to allow field-scale performance computation.             

The main computational phases of the sprinkler irrigation precipitation pattern simulation model 

described here are depicted in Figure 9.  Figure 9 also provides a list of the model inputs, 

consisting of model parameters as well as environmental, sprinkler, and field datasets. It also 

shows how the input data sets relate to the computational phases. 

 

5. Description of the components of the sprinkler irrigation precipitation pattern  

    simulation model     

 The sprinkler irrigation precipitation pattern simulation model described here is a C++ 

program developed based on the object oriented programming approach. The model has six 

classes (user defined data types and member functions): CSprinklerPrecipitationModel, CInput, 

CWaterDropletDynamics, CComputeIrrigationPrecipitationPattern, CIrrigationPerformance, 

and COutput. Each of these classes consist of a pair of files: a header file for the declaration of 

member functions with the extension (.h) and an implementation file with extension (.cpp). The 

header files are those in which the member functions and variables of a class are declared and 

their attributes defined: SprinklerPrecipitationModel.h, Input.h, WaterDropletDynamics.h, 
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Sprinkler data:

Sprinkler head-discharge 

function,

sprinkler nozzle diameter, 

sprinkler angle of tilt, 

pressure head in the indoor 

test, sprinkle riser pipe height, 

radial applic. rate function

Sprinkler data:

Sprinkler head-discharge 

function,

sprinkler nozzle diameter, 

sprinkler angle of tilt, 

pressure head in the indoor 

test, sprinkle riser pipe height, 

radial applic. rate function

Model parameters:

Parameters for wind effects 

on drag and droplet drift, 

parameter for acceleration 

effects,  minimum droplet 

diameter, diameter 

discretization step, angular 

discretization step,

  

 

Model parameters:

Parameters for wind effects 

on drag and droplet drift, 

parameter for acceleration 

effects,  minimum droplet 

diameter, diameter 

discretization step, angular 

discretization step,

  

 

Environmental data:

Air density, air viscosity, 

wind speed,

wind vector azimuth, 

evaporation fraction 

Environmental data:

Air density, air viscosity, 

wind speed,

wind vector azimuth, 

evaporation fraction 

Field data:

Number of sprinklers along 

laterals and in a direction normal 

to laterals, coordinate of inlet 

sprinkler, sprinkler spacing along 

laterals and along the mainline, 

gird square dimension, field 

dimensions, duration of irrigation, 

sprinkler pressure heads,  

Field data:

Number of sprinklers along 

laterals and in a direction normal 

to laterals, coordinate of inlet 

sprinkler, sprinkler spacing along 

laterals and along the mainline, 

gird square dimension, field 

dimensions, duration of irrigation, 

sprinkler pressure heads,  

Droplet volumetric application rate 

characterization computation 

Droplet volumetric application rate 

characterization computation 

Simulation of sprinkler precipitation pattern 

under field condition

Simulation of sprinkler precipitation pattern 

under field condition

Start computationStart computation

End computationEnd computation

Input data

Output data

Spatial distribution of precipitation, irrigation performance 

for a system of overlapping sprinklers, Droplet volumetric 

application rates 

Output data

Spatial distribution of precipitation, irrigation performance 

for a system of overlapping sprinklers, Droplet volumetric 

application rates 

  

   

    Figure 9 Input data sets and their relationship with the main computational phases of a  

                  sprinkler irrigation precipitation pattern simulation model   
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ComputeIrrigationPrecipitationPattern.h, IrrigationPerformance.h, and Output.h. The 

implementation files are those in which functions declared in the header files are implemented: 

SprinklerPrecipitationModel.cpp, Input.cpp, WaterDropletDynamics.cpp, 

ComputeIrrigationPrecipitationPattern.cpp, IrrigationPerformance.cpp, and Output.cpp. An 

additional file SIPSM.cpp (Sprinkler Irrigation Precipitation Simulation Model) contains the 

main function of the program. 

 The class CSprinklerPrecipitationModel has one member function with a public scope 

called Run, which is invoked by a function call from the SIPSM.cpp file. It also has a number of 

member functions that are private to the class and are designed to compute sprinkler wetted 

diameter, droplet diameter range and discretization steps, and droplet volumetric application 

rates based on measured sprinkler radial application rates. In addition it is in this class where 

program variables with global scope are declared and function calls to the main member 

functions of the CInput, CWaterDropletDynamics, CIrrigationPerformance, and COutput 

classes are made. 

The CInput class has several member functions declared in the header file, CInput.h. The 

functions in the CInput class create the folder, in which input and output data files are stored, 

during run time and read input data from files. There are two input data files used by the model: 

(i) SprIrrigPrecSimulation.Inp file contains input data used as an input to the  precipitation 

pattern simulation model. This include pertinent physical properties of the ambient air, hourly 

average wind speed and direction, model parameters, geometric data (as related to field layout, 

sprinkler spacing’s, field dimensions, and field discretization step size for numerical simulation), 

and irrigation management related factors such as irrigation application duration and required 

depth of application; and (ii) SprRadialApplicRate.Inp file contains input data mainly used in 

droplet volumetric application rate characterization computation. The data in this file consists of 

minimum droplet diameter, angular discretization steps for numerical computation, sprinkler 

design factors (nozzle diameter, pressure head-discharge relationships, and vertical tilt angle), 

sprinkler riser pipe height, nozzle pressure head during sprinkler tests, an array of sprinkler 

pressure head data for field-scale simulation, and parameters of a cubic polynomial obtained 

through regression fit to measured sprinkler radial application rate data.     
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The CWaterDropletDynamics class has several member functions designed to initialize pertinent 

variables of the droplet dynamics model and compute the trajectories and landing coordinates of 

individual droplets on the irrigated field surface with a Runge-Kutta numerical method (Section 

3.4). This is also the class from which member functions of the 

CComputeIrrigationPrecipitationPattern class are accessed.   

 The CComputeIrrigationPrecipitationPattern class has member functions, declared in the 

header file, that have both public scope and are private to the class. Based on the landing 

coordinates of individual droplets computed in the CWaterDropletDynamics class, the functions 

in this class apportion the volumetric application rates associated with a droplet among grid 

squares in the irrigated field and compute gird square application rates (Sections 4.2.2 and 4.2.3).  

 The CIrrigationPerformance class contains member functions that compute field-scale 

irrigation performance (application efficiency, uniformity, and irrigation requirement index), 

based on computed grid square application rates, spray evaporation fraction, and irrigation 

requirement specified at the input (assuming a scenario in which sprinkler precipitation rates are 

less than soil intake rate). 

  The COutput class has several member functions both with public and private scope. 

These functions save output data files into a subfolder created by the program during runtime. 

The model output is saved in three text files: (i) DepthOfIrrigation.Out file contains computed 

precipitation depths in each of the grid squares, in an irrigated field, arranged in a tabular format; 

(ii) DepthOfIrrigationForContour.Out has the same content as the DepthOfIrrigation.Out file, 

but the data is arranged in a format that it can readily be opened and processed by a contouring 

software such as SURFR; and (iii) DrpsVolumetricApplicRate.Out file contains an array of 

droplet diameters and associated droplet volumetric application rates used in a precipitation 

pattern simulation. 

 

Chapter 6 Model evaluation  

 

Model evaluation is conducted at two different levels. First the droplet dynamics submodel that 

forms the physical basis of the sprinkler precipitation pattern simulation model is evaluated  
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through a comparison of its outputs with a simplified analytical model and based on intuitive 

physical reasoning. This is then followed by model evaluation based on a comparison of 

measured and simulated data. 

 

6.1 Comparison of the numerical model with analytical solutions 

Considering a spherical droplet of constant diameter undergoing an impulsively started 

motion, with known initial conditions, through a static frictionless fluid (aerodynamic drag is 

zero), the equation that describes it motion reduces to the simple two dimensional form: 
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The analytical solution for Eqs. 63 and 64 is  
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The variables in Eqs. 63-69 are defined in relation to Eqs. 13-18. Assuming a horizontal field 

surface, the origin of the coordinate system is set at the bottom of the sprinkler riser pipe, which 

is considered to be vertical. The input data sets used for comparing the numerical model with the 

analytical solution (Eqs. 66-69) is given in Table 2 (dataset I). Dataset I represents a scenario in 

which a droplet with a diameter of 3.0mm is released from a sprinkler nozzle, with a vertical tilt 

)()cos)t(V ox 66(V=
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angle of 25o, set at a height of 1.2m above the field surface. Five different initial velocities,  

specified in terms of nozzle pressure heads ranging between 25.0m-45.0m in intervals of 5.0m, 

are considered (Table 2). Noting that in sprinkler droplet dynamics modeling the droplet initial 

velocity vector is assumed to be equal to the average stream cross-sectional velocity at the 

sprinkler nozzle (Section 2.4), in the model described here the modulus of the droplet initial 

velocity vector is computed with Eq. 70 as a function of nozzle pressure head:  

 

)(ghC
sd 7020 =V  

 

Table 2 Datasets used in the comparison of the numerical and analytical solutions and in the  

             analysis of wind effects on droplet motion 

Variables Unit Dataset I Dataset II Dataset III 
1Density of air   (kg/m3) - - 1.205 

2Kinematic viscosity of air  m2/s - - 0.0000151 

Water droplet diameter (m) 0.003 0.004 0.0002-0.003 

Drag correction parameter for droplet 

acceleration effects 
(-) 0.0 0.0 -0.025 

Scale factor for wind effects on drag (-) 0.0 0.0 0.75 

Scale factor for wind effects on droplet drift (-) 1.0 1.0 2.5 

Sprinkler pressure head (m) 25.0-45.0 30.0 35.0 

Sprinkler discharge coefficient (-) 0.5 0.5 0.918 

Sprinkler nozzle height above field surface (m) 1.2 0.45 0.45 

Sprinkler vertical angle of tilt () (deg) 25 7-60 23 

Sprinkler angular setting (deg) 0.0 45 0 

Wind speed (m/s) 0.0 0.0 1.25/2.5 

Wind vector azimuth  (deg) - - 0-270 
1,2 Density and kinematic viscosity of air at standard condition (20oC , 1.0atm, dry air), The lower  

limit of the nozzle vertical tilt angle is set based on data from sprinkler manufacturers catalogue  

(WeatherTec: http://weathertec.com) and the upper limit of the range is set with the view of having a 

few data points above 45o  

 

In Eq. 70 Cd = discharge coefficient of sprinkler nozzle (-), g = gravitational acceleration (m/s2),  

and hs = sprinkler pressure head (m). Note that the discharge coefficient of the sprinkler is set at 

a lower value of 0.5 in order to constrain the computed distances and velocities within realistic 

http://weathertec.com/
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ranges. As can be noted from Figure 10 the droplet trajectories computed with the numerical 

model compare very well with those obtained with the analytical model. 
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         Figure 10 Comparison of droplet trajectories computed with the numerical and  

                          analytical models for different initial conditions  

 

Furthermore, it can be shown from Eqs. 65, 67 and 69 that the radial distance, x, between the 

sprinkler nozzle and a point, on the same horizontal plane as the droplet exit point form the 

nozzle, through which the droplet passes during its downward motion is given as    
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This distance will henceforth be simply referred to as droplet radial distance from the sprinkler. 

From Eq. 71 it follows that for a given droplet diameter and initial condition (nozzle pressure 

head), the nozzle vertical tilt angle that yields maximum radial distance, xmax, is 45.0o (i.e., when 

the droplet initial velocity vector is equally divided between its horizontal and vertical 

components). The equation for xmax can then be expressed as 
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Droplet radial distances, from the sprinkler nozzle, computed with the analytical and numerical 

models, as a function of sprinkler nozzle vertical tilt angle, are shown in Figure 11a. The dataset 

used for model evaluation is presented in Table 2 (dataset II). Computed droplet radial distances 

with the numerical model are in good agreement with those obtained with the analytical solution, 

Eq. 71. The analytical solution predicts that the maximum droplet radial distance from the 

sprinkler nozzle occurs at  = 45o and from Eq. 72 the corresponding distance for the specified 

initial condition (pressure head) is 15.0m. For the condition in which aerodynamic drag is zero, 

the numerical model as well computes a maximum droplet radial distance of 15.0m, which 

occurs at  = 45o (Figure 11a). The corresponding droplet trajectories computed with the 

numerical model as a function of the nozzle vertical tilt angles are depicted in Figure 11b.  
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   Figure 11 (a) Comparison of droplet radial distances computed, with the numerical and  

                    analytical models, as a function of sprinkler nozzle vertical tilt angle and  

                    (b) droplet trajectories as a function sprinkler vertical tilt angle   

 

It can be noted that the maximum elevation that the droplet reaches increases with the vertical tilt 

angle, but the radial distance initially increases with the tilt angle, attains it maximum at 45o and 
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then decreases. Although the nozzle vertical tilt angle of impact sprinklers is typically less than 

27o (e.g., von Bernuth, 1988) and that the scenario of droplet motion considered here represents a 

simpler problem than that occurring under field conditions, the fact that the numerical and 

analytical solutions for different sets of conditions compare well suggests that the representation, 

in the numerical model, of the physics underlying droplet dynamics is sound.          

 

6.2 Wind effects on droplet motion, simulation based analysis  

Given a droplet diameter, set of initial conditions, pertinent physical parameters of the 

ambient air, and wind velocity vector, accurate prediction of droplet trajectories and radial 

landing distances requires that the scale factors (model parameters), introduced to take into 

account the effect of wind on droplet drag and drift (Section 3.2), be known. The determination 

of these parameters, for a droplet, based on measurements is unrealistic in the context of this 

study. Hence, the objective here is limited to drawing qualitative inferences on model 

performance based on comparisons of simulated patterns of droplet motion, as affected by wind, 

with expectations stemming from physical and intuitive reasoning.                     

Simulations were conducted for combinations of five droplet diameters (in the range 

0.2mm to 3.0mm), wind speeds of 1.25m/s and 2.5m/s, and six levels of wind vector azimuth (in 

the range 0o to 270o). This results in five simulations for each wind velocity vector and a total of 

sixty simulations in all (Figure 12 and 13).  The input dataset used in the simulation examples is 

summarized in Table 2 (dataset III). For all the simulation examples, the initial conditions and 

pertinent physical parameters of the ambient air are set at the same level. The angular setting of 

the sprinkler nozzle is 0o from the reference axis, which is taken to be the longer axis of the 

horizontal plane (Figures 12 and 13). The wind vector azimuth is measured with respect to the 

shorter axis of the horizontal plane. The parameter set used in the simulation examples are 

arbitrary, in the sense that they are not the product of a model calibration process, although they 

are within the range considered realistic (Section 6.3.2). Two yardsticks considered here for 

measuring the effect of wind on droplet motion are droplet wind drift and radial distance of 

droplet landing point from the sprinkler. Droplet radial distance from a sprinkler can easily be 

calculated given the droplet landing coordinates. On the other hand, wind drift effect in the 

context of sprinkler irrigation is often described as wind induced distortions on sprinkler 
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Figure 12 Droplet trajectories for wind speed of 1.25m/s and wind vector azimuth of: (a) 0o , (b) 180o,  

                (c ) 45o, (d) 225o, (e) 90o, and (f) 270o (The reference axis for measuring the angular  setting of  

                the sprinkler nozzle is the longer horizontal axis,  note that the positive and negative algebraic  

                signs in axis labels are meant to emphasize that distance measurement were made in opposite  

                spatial direction from the origin of the coordinate  system) 
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irrigation precipitation pattern relative to that associated with an equivalent no-wind condition. 

However, the concept of droplet wind drift can be more subtle. In principle, any wind induced 

deviation in droplet trajectory, which could have both horizontal and vertical components, from 

an equivalent no-wind condition can be considered droplet wind drift (Zerihun and Sanchez, 

2014b). In order to simplify the concept for practical application, here droplet wind drift is 

quantified simply as the perpendicular distance on the horizontal plane between droplet landing 

point and the projection on horizontal plane of the sprinkler nozzle centerline. Hence, for the 

current simulation examples, in which the angular setting of the sprinkler nozzle is 0o from the 

reference axis, droplet drift is then equal to the coordinate of the droplet landing point on the 

shorter axis.   

Values of wind vector azimuth considered in the simulation examples include 0o and 

180o, which represent conditions whereby the projection on the horizontal plane of the droplet 

initial absolute velocity vector is orthogonal to the wind velocity vector. All things being equal, 

for a given droplet diameter these values of wind vector azimuth should result in maximum drift. 

At the opposite end of the range is a scenario with a wind vector azimuth of 90o and 270o, which 

represent conditions where the projection on the horizontal plane of the droplet initial absolute 

velocity vector is collinear with the wind velocity vector, hence droplet drift as defined above 

should be zero. Considering the relatively small vertical tilt angle of sprinklers, for a given 

droplet diameter the scenario with wind vector azimuth of 90o should result in minimum drag, 

hence maximum droplet radial landing distance from the sprinkler and the opposite should be 

true for a condition in which the wind vector azimuth is 270o. An intermediate scenario consists 

of wind vector azimuth of 45o and 225o. This represents two wind velocity vectors, with the same 

line of action but opposite sense, making a 45o angle with the horizontal component of the 

droplet initial absolute velocity vector. It can be noted that for wind vector azimuth of 45o and 

225o, during the initial phase of droplet motion wind effects on droplet motion are nearly equally 

divided between drag and drift. As will be discussed in subsequent sections this has an effect on 

the relative magnitudes of droplet drift and radial landing distances from the sprinkler. 

Evidently, the direction and magnitude of the component of the wind velocity vector 

normal to the droplet absolute velocity vector changes continuously with time (may note 

discussion on this in the accompanying document). However, droplet wind drift should have the 
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Figure 13 Droplet motion for wind speed of 2.5m/s and wind vector azimuth of: (a) 0o , (b) 180o, (c) 45o,  

    (d) 225o, (e) 90o, and (f) 270o (The reference axis for measuring the angular  setting of the  

                 sprinkler nozzle is the longer horizontal axis, note that the positive  and negative algebraic  

                 signs in axis labels are meant to emphasize that distance measurement were made in opposite  

                 spatial direction from the origin of the coordinate system) 
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same general direction as the component of the wind velocity vector normal to the projection on 

the horizontal plane of the droplet initial absolute velocity. Hence considering wind vector 

azimuths of 0o, 45o, 180o,  and 225o and the angular setting of the sprinkler nozzle, it can be 

noted from the simulation results summarized in Figures 12 and 13 that droplet wind drift 

directions for all the scenarios is consistent with physical reasoning. For wind vector azimuths of 

90o and 270o (Figures 12e, 12f , 3e, and 13f), the model prediction shows that droplet wind drift 

is zero and droplet motion is (planar) confined to the vertical plane containing the centerline of 

the sprinkler nozzle, which is in line with expectations stemming from physical reasoning. It can 

be noted from Figures 12 and 13 that for any given droplet diameter the wind drift  produced by 

2.5m/s wind speed is invariably larger than that produced by the smaller wind speed of 1.25m/s, 

which is consistent with expectation based on intuitive physical reasoning.  

It can be noted from Figures 12f and 13f that the finer droplets (0.2mm and 0.5mm) move 

backwards with respect to the initial droplet velocity vector. Considering that initial conditions 

for all droplets are the same, it follows that at the sprinkler nozzle droplet kinetic energy per unit 

volume is also the same for all droplets. However, drag per unit volume increases with a 

decrease in droplet diameter, because of the associated increase in droplet specific surface area, 

which affects the empirically determined steady state drag coefficient. This implies that the 

initial kinetic energy of finer droplets can be dissipated by a larger drag to such an extent that the 

droplet horizontal velocity component becomes nearly zero at relatively short distances from the 

sprinkler. Hence, in accordance with the computational framework implemented in the model 

described here (Section 3.5), once the horizontal component of droplet absolute velocity falls to 

zero, droplet is assumed to be fully carried by the ambient air. In which case the direction of 

droplet motion is reversed and droplet assumes a horizontal velocity equal to the wind velocity. 

To the extent that droplet motion is confined to the vertical plane containing the nozzle 

centerline, considering the description given above for droplet wind drift, this form of droplet 

motion is not considered here as wind drift.  

 

In order to further examine patterns of droplet motion, as affected by wind, on quantitative basis, 

droplet wind drift and droplet radial landing distance from the sprinkler are expressed in terms of 

three dimensionless parameters and the results are summarized in Figure 14. The dimensionless 
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parameters are defined as follows: (i) Normalized droplet drift: for a given wind velocity vector 

and droplet diameter combination, the normalized droplet drift is computed as the ratio of the 

droplet wind drift to the maximum droplet drift associated with the given wind speed (Figure 14a 

and 14b). Given wind speed and droplet diameter, this parameter is considered here to be 

particularly useful in evaluating the sensitivity of droplet drift to wind vector azimuth; (ii) Drift 

ratio: for a given wind velocity vector and droplet diameter, the drift ratio is computed as the 

quotient of droplet drift and droplet radial landing distance from the sprinkler (Figure 14c and 

14d). Considering a given wind velocity vector, this parameter is considered here to be useful in 

quantifying the sensitivity of wind drift to droplet diameter; and (iii) Normalized droplet radial 

distance: for a given droplet diameter and wind velocity vector, the normalized droplet radial 

distance is calculated as the ratio of the droplet radial landing distance from the sprinkler to the 

maximum droplet radial distance associated with the given wind speed (Figure 14e and 14f). 

Given a droplet diameter, this parameter is useful in quantifying the sensitivity of droplet radial 

distances from the sprinkler to wind velocity vector.            

 

Graphs of the normalized droplet drift versus droplet diameter are shown in Figures 14a and 14b 

for wind speeds of 1.25m/s and 2.5m/s, respectively. For a given droplet diameter and wind 

speed, maximum wind drift (defined in terms of the normalized droplet drift) occurs when the 

wind velocity vector makes a 90o angle with the horizontal component of the droplet initial 

absolute velocity. Note that this corresponds with 0o and 180o wind vector azimuth. On the other 

hand, when the wind velocity vector is collinear with the projection on the horizontal plane of 

the droplet initial absolute velocity (wind vector azimuth of 90o and 270o) droplet drift becomes 

zero (Figures 14a and 14b). When the acute angle between the horizontal component of the 

droplet initial absolute velocity vector and the wind velocity vector is 45o (which correspond to 

wind vector azimuths of 45o and 225o ), the normalized droplet drift curves fall between those 

obtained for 0o and 180o wind vector azimuths (Figures 14a and 14b). Note that these 

observations are consistent with intuitive physical reasoning. As would be expected, the 

normalized droplet drift curves associated with wind vector azimuths of 0o and 180o are mirror 

image of each other (they exhibit symmetry about the zero drift line, Figures 14a and 14b). This,  
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Figure 14 Droplet drift and radial landing distances: (a) Normalized droplet wind drift as a function of  

                droplet diameter for wind speed of 1.25m/s, (b) Normalized droplet drift as a function droplet  

                diameter for wind speed of 2.5m/s, (c) Drift ratio as a function of  droplet diameter for wind  

                speed of 1.25m/s, (d) Drift ratio as a function of droplet diameter for wind speed of 2.5m/s,  

                (e) Normalized droplet radial distance as a function wind vector azimuth for wind speed of  

                1.25m/s, and (f) Normalized droplet radial distance as a function wind vector azimuth for wind  

                speed of 2.5m/s   
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however, is not the case for azimuths of 45o and 225o. Instead droplet drift for wind vector 

azimuth of 225o is larger than that observed for 45o. It can be shown that in both cases the effect 

of wind during the initial part of droplet motion is nearly equally split between drag and wind 

drift. However, for wind vector azimuth of 45o the effect of wind on drag is to diminish it, 

whereas the opposite is true when the wind vector azimuth is 225o. Although the direct effect of 

this is to reduce droplet radial distance for the case in which wind vector azimuth is 225o, a 

review of the droplet trajectory data shows that it also has an effect on droplet velocity and 

duration of droplet motion. Droplet velocity remains higher and the corresponding duration of 

droplet motion shorter for the scenario in which wind vector azimuth is 45o compared to that of 

225o. The implication is that for a given wind speed a droplet of given diameter will be subjected 

to wind drift effects for a longer duration when wind vector azimuth is 225o than is the case for 

45o, which may, to a certain extent, explain the observed difference in the normalized droplet 

drift for these wind vector azimuths.        

Considering Figures 14a and 14b, it can be noted that for each value of the wind vector 

azimuth there are two segments, a segment ranging from 0.2mm droplet diameter to 0.5mm in 

which the normalized droplet drift shows a slight decrease from the maximum value and a 

second segment for droplet diameters varying between 0.5mm and 3.0mm, where droplet drift 

rises slightly and then levels-off. The difference in slope in the two segments of the curves is 

related to the different physical mechanisms driving droplet motion and their mathematical 

representation in the model (Section 3.5). For both 1.25m/s and 2.5 m/s wind speeds, the motion 

of the droplet with 0.2mm diameter is dominated by a mechanism in which droplet is fully 

carried by wind. As will be discussed subsequently, that in fact is the case for the droplet with 

0.5mm diameter as well under a wind velocity vector of 2.5 m/s and 270o azimuth.    

 

The droplet drift ratio expressed as a function of wind vector azimuth and droplet diameter is 

depicted in Figures 14c and Figure 14d for wind speeds of 1.25m/s and 2.5m/s, respectively. It 

can be noted that for a given wind velocity vector, drift ratio is generally inversely related to 

droplet diameter. This implies that wind drift relative to droplet radial distance decreases as 

droplet diameter increases, which is a physically reasonable result. An interesting result is that 

the drift ratio curves for the different wind vector azimuths converge asymptotically to the zero 
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drift line with increases in droplet diameters (Figure 14c and 14d). However, the rate of 

convergence of the curves, with increase in droplet diameter, is lower for the scenario in which 

wind speed is 2.5m/s compared to that of 1.25m/s. The implication is that, all things being equal, 

wind drift effects attenuate at a faster rate, with increases in droplet diameter, for the lower wind 

speed than is the case for the higher wind speed, which is a physically plausible observation. 

Note that the relatively larger drift ratio associated with wind vector azimuth of 225o compared 

to that of 180o, does not imply that wind drift associated with wind vector azimuth of 225o is 

larger than that of 180o. Instead it indicates that the ratio of droplet drift to droplet radial landing 

distance is larger for the case in which wind vector azimuth is 225o. This could possibly be 

explained by the fact that, for the case in which wind vector azimuth is 225o, wind effects are at 

least initially, nearly equally, divided between drag and drift and that the effect of wind on drag 

is to increase it – which leads to a decrease in droplet radial distance from sprinkler. The net 

result being a relatively larger droplet drift ratio.  

 

The graphs showing the normalized droplet radial distance, expressed in terms of droplet 

diameter and wind vector azimuth, are given in Figure 14e and Figure 14f for wind speeds of 

1.25m/s and 2.5m/s, respectively. For a given droplet diameter and wind speed the maximum 

droplet radial distance corresponds to wind vector azimuth of 90o and the minimum droplet 

radial distance corresponds to a wind vector azimuth of 270o. Noting that the wind velocity and 

the horizontal component of the droplet initial absolute velocity vectors are collinear and have 

the same sense (for 90o azimuth) and opposite sense (for 270o azimuth), it becomes evident that 

these results are consistent with physical reasoning. The normalized droplet radial distance 

decreases, with increases in the wind vector azimuth in the range 90o to 270o and, it increases in 

the range 0o to 90o azimuth. Note that these observations are consistent with the changes in the 

relative magnitudes of the components of the wind velocity vector associated with the variations 

in the wind vector azimuth. The rate with which normalized droplet radial distance decreases, 

with increases in wind vector azimuth between 90o and 270o, is faster for wind speed of 2.5m/s 

than is the case for 1.25m/s.  

 Considering a droplet motion entirely driven by the initial impulse at the sprinkler nozzle, 

for any given wind vector azimuth the normalized droplet radial distance should be 
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monotonically decreasing function of droplet diameter. It can be noted from Figures 14e and 14f 

that in fact is the case for droplet diameters ranging between 0.5mm-3.0mm under wind speed of 

1.25m/s. For a wind speed of 2.5m/s the same pattern can be noted for droplet diameters of 1.0, 

2.0, and 3.0mm over the entire wind vector azimuth range and for droplet diameter of 0.5mm in 

the wind vector azimuth range of 0o-225o. As described above for the finer droplets the dominant 

form of droplet motion consists of one in which droplets were fully carried by wind, hence the 

radial curves for these droplets deviate from the pattern observed for the larger droplets.  

 

6.3 Model evaluation with measured data and potential field-scale application  

  

This section presents an evaluation of the numerical model through comparisons with measured 

data. Two groups of datasets collected during single sprinkler tests conducted (1) in indoor 

settings and (2) under field conditions were used in the evaluation. Description of the layouts of 

the sprinkler apparatuses used in the indoor and field evaluations, data collected, and results of 

model calibration and evaluation are presented subsequently.   

 

6.3.1 Indoor single sprinkler tests, datasets, and model evaluation 

 A series of single sprinkler tests were conducted in an indoor facility in the Maricopa 

Agricultural Center (MAC) of the University of Arizona. The goal of the indoor tests was to 

determine the sprinkler radial application rate patterns, based on which droplet diameter ranges, 

droplet size discretization steps, corresponding droplet volumetric application rates, and sprinkler 

wetted radius are estimated (Sections 4.2.1 and 4.3.1). 

 

Description of the apparatus used in the single-sprinkler indoor tests 

The layout of the indoor test apparatus and its components are depicted in Figure 15. The main 

elements of the system consist of a buffering tank, a suction pipe, a pump, a discharge pipe, a 

sprinkler mounted on a riser pipe, a return flow pipe, a flow meter, and pressure gages. The 

sprinkler used in the indoor irrigation evaluations is a WeatherTec 10-20 model with nozzle 

diameter of 3/32. It is mounted on a 0.53m riser pipe, which in turn is installed at the 

downstream end of a 15.2m long pipe, on the discharge side of a high head low capacity booster 
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                      Figure 15 A sketch of the layout of the single sprinkler indoor test apparatus: (a) plan view and (b) isometric view 
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pump. The pump obtains its supply from a buffering tank through the suction pipe, the offtake 

point of which is at the bottom of the tank (Figure 15). The tank in turn is supplied from a local 

water system. A 3/4″ diameter PVC pipe was used on the suction and discharge side of the pump 

as well as for the return flow section. The steady state sprinkler discharge was measured with a 

flow meter (0.1Gallon precision) installed on the discharge pipe (Figure 15). In addition, two 

pressure gages with a precision of 2.0psi (1.406m water column) were installed between the 

pump and the sprinkler. The return flow pipe section connects the discharge pipe with the 

buffering tank and is equipped with a return flow control valve. It provides the mechanism for 

controlling the sprinkler discharge, and hence pressure head, which is accomplished by throttling 

the return flow control valve as desired. The dimensions of the system components are shown in 

Figure 15.    

Precipitation depths along a wetted radius of the sprinkler are measured with 50 rain 

gages installed along the discharge pipe at 0.3m spacing (Figure15). The rain gages were 

obtained from the Irrigation Training & Research Center of the California Polytechnic State 

University, San Luis Obispo, CA. The rain gages have a catchment area of 104.84cm2 and are 

graduated in 5.0ml increments up to a 100.0ml volume. Assuming a volumetric reading error of 

1.0ml, the corresponding measurement precision in depth units would be about 0.1mm. For 

volumetric measurements ranging between 100.0ml and 200.0ml, the rain gages are graduated in 

25.0ml increments. Considering 5.0ml volumetric reading error, the corresponding precision in 

depth units is about 0.5mm. Considering that more than 95.0% percent of the measurements for 

the indoor single tests and all of the measurements for the field tests are smaller than 100.0ml, a 

measurement precision of 0.1mm can be assumed in subsequent discussion.  

 

Data description  

 

Measured radial application rate: Each of the single-sprinkler indoor tests were conducted for a 

duration of 3.0h. During an  evaluation the test sprinkler was operated under a steady nozzle 

pressure head of 40.0psi (28.1m), 50.0psi (35.2m), 60.0psi (42.2m), or 70.0psi (49.2m), Table 3. 

Note that these pressure head levels span much of the recommended range for the sprinkler used 

in the study: WeatherTec 10-20, nozzle size 3/32″. In addition to pressure heads the steady state 
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nozzle discharges were also measured during each evaluation. At the end of an evaluation, 

depths collected in the rain gages were recorded and sprinkler radial application rates were 

computed based on the measured depths and irrigation duration. 

 Four of the datasets from the indoor tests were used in model evaluation. The measured 

radial application rates for these datasets are depicted in Figure 16. The measured wetted radius  

vary between about 10.5m for sprinkler pressure head of 49.2m and 11.7m for sprinkler pressure 

head of 42.2m, with the wetted radius for sprinkler pressure heads of 28.1m and 35.2m being 

about 11.4m. The cutoff value, in terms of precipitation depth collected in rain gages, used for 

the determination of sprinkler wetted radius is 0.1mm (assumed precision of the rain gage). This 

implies that rain gages with precipitation depths less than 0.1mm are considered to have received 

no precipitation.  

 

 Table 3 Datasets from indoor single sprinkler tests used in model evaluation  

 Sprinkler nozzle height = 0.53m, sprinkler vertical tilt angle = 23o; sprinkler nozzle diameter 2.381mm;   

  the coefficient and exponent of sprinkler head-discharge function are 0.0000157 and 0.522, respectively. 

 

Variables Unit Dataset IV Dataset V Dataset VI Dataset VII 

Time of 

irrigation 

evaluation  

Date - 11/05/2013      10/30/2013 11/02/2013     11/04/2013 

Time 

of day  

Start - 2:20PM 11:00AM 9:42AM 10:50AM 

End  - 5:20PM 2:00PM 12:42PM 1:50PM 

      Duration H 3.0 3.0 3.0 3.0 

Sprinkler pressure head m (psi) 28.1 (40.0) 35.2 (50.0) 42.2 (60.0) 49.2 (70.0) 

Average temp 
oF 72.1 68.9 75.5 75.3 

Average dew point temp 
oF 42.0 35.4 30.8 44.3 

Average relative humidity % 33.8 29.2 19.9 33.3 

Av. vapor pressure deficit kPa 1.8 1.7 2.5 2.0 

Wetted radius  M 11.4 11.4 11.7 10.5 

Spray evaporation fraction  - 0.36 

 

0.34 

 

0.3 

 

0.33 

 
Cubic  

polynomial 

parameters 

(curve fit) 

Constant  Mm/h 2.887 2.8217 3.4593 3.3013 

Linear term mm/m/h -1.3612 -1.3181 -1.5127 -1.3208 

Quadratic term mm/m2/h 0.2084 0.2092 0.2341 0.2197 

Cubic term mm/m3/h -0.0095 -0.01 -0.0112 -0.0117 
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Overall based on the datasets presented here and those not used in model evaluation, two distinct 

radial application patterns can be discerned for the sprinkler used in the study (Figure 16). For all 

the datasets the maximum application rate occurs at the sprinkler location and then it decreases 

rapidly with distance from sprinkler. However, when the sprinkler is operated at the relatively 

lower and intermediate pressure heads (28.1m and 35.2m), the middle section of the radial 

application rate curve initially continues to decrease with distance from sprinkler, but at a 

decreasing rate. It attains its minimum about half-way through the sprinkler wetted radius, 

referenced from the sprinkler location, and then begins to increase. Near the edge of the sprinkler 

wetted area the curve levels-off and then falls rapidly to zero. For the larger pressure heads 

(42.2m and 49.2m) the application rate patterns near the sprinkler and at the far end, close to the 

edge of the wetted area, are similar to those for the relatively lower pressure heads. On the other 

hand, the middle sections of the radial application rate curves for pressure heads of 42.2m and 

49.2m are relatively flat compared to those obtained for lower pressure heads (28.1m and  

35.2m). The dip in the middle section of the application rate curves, for the lower sprinkler 

pressure heads (which increases with a decrease in pressure head, Figures 16a and 16b), is 

consistent with the so-called donut shaped application pattern described in the literature for 

sprinklers operated at relatively lower pressure heads than is optimal (Keller and Bliesner, 1990). 

 Figures 16a-16d depict two additional curves superimposed on the measured radial 

precipitation pattern. The dashed lines represents a cubic polynomial fit to the measured 

sprinkler radial application rate data with a coefficient of determination, r2, greater than 0.91 

(Table 3). As will be discussed in subsequent sections, the regression functions are used as 

model input to specify sprinkler radial application pattern at a given nozzle pressure head and the 

dashed lines, on the other hand, represent simulated application rate curves.     

 

Computation of spray evaporation losses:  Weather data pertinent to spray evaporation losses, 

representing outdoor conditions, during the irrigation evaluations were obtained from a nearby 

AZMET station: http://ag.arizona.edu/azmet. The data consists of average temperature, dew 

point temperature, relative humidity, and vapor pressure deficit (Table 3). Evidently temperature 

in the indoor test facility could be slightly higher than the outdoor condition, while humidity 

should be appreciably higher; nonetheless, the outdoor weather data can be indicative of the 

http://ag.arizona.edu/azmet/data/0613eh.txt
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       Figure 16 A comparison of sprinkler radial application rates (obtained through indoor  

                       measurements, regression fit, and simulated) for sprinkler pressure head:  

                       (a) 28.1m (40.0psi), (b) 35.2m (50.0psi), (c) 42.2m (60.0psi), (d) 70.0m  

                       (49.2psi), and (e) Aggregate comparison of simulated radial application  

                       data with regression fit         
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conditions under which the tests were conducted. Noting that the tests were conducted indoors, 

wind drift losses are considered zero. Spray evaporation losses can then be computed through 

mass balance calculations as a function of volume applied and volume collected. Volume applied 

can be computed as a function sprinkler steady state discharge and duration of test. Volume 

collected over the wetted area of the sprinkler can be computed as a function of depths collected 

in each rain gage and the corresponding annular ring of irrigated area (Section 4.2.1).  

  As can be noted from Table 3, on average about a third of the applied volume was lost to 

spray evaporation, with a range of variation about the mean being 3.0%. Minimum spray 

evaporation loss fraction of 0.30 is obtained for dataset VI and a maximum fraction of 0.36 is 

computed for dataset IV (Table 3). With spray evaporation loss fraction of 0.34 and 0.33 each 

obtained for datasets V and VII, respectively. These results suggest that the prevailing 

microclimate in the indoor facility may not have been significantly different between the tests as 

the outdoor weather data suggests. The fact that spray evaporation losses computed for outdoor 

evaluations closely follow trends in the measured outdoor weather data (Section 6.3.2), lends 

some credence to the preceding observation on the temperature and humidity conditions under 

which the indoor tests were conducted. It should also be noted that other factors such as 

variations in droplet size distribution associated with different nozzle pressure heads as well as 

flow measurement and sampling errors may, to a certain extent, contribute to the variations in the 

computed spray evaporation fractions in manners not considered here. Note that the reference to 

sampling errors here relates to the question of: Is the spacing between rain gages sufficiently 

small for the depth collected in a rain gage to be considered a representative average sample of 

precipitation over the entire area of the corresponding annular ring (Section 4.3.1)? 

 

 Model evaluation under no-wind condition 

Model evaluation under no-wind condition is based on a comparison of the simulated and 

measured sprinkler radial application rate patterns. Such a comparison allows us to test an 

important hypothesis on which the numerical algorithm of the sprinkler precipitation pattern 

simulation model is based, which can be summarized as: given sprinkler radial application rate 

data measured under no-wind condition, sprinkler specification, nozzle coordinate in a selected 
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coordinate system, and nozzle pressure head; the model can generate a symmetric precipitation 

pattern about a sprinkler with a radial application rate that closely matches measurement.  

 As mentioned above the measured radial application rate pattern, associated with a given 

nozzle pressure head, is specified at the input in terms of the parameters of the regression 

functions given in Table 3. Additional model inputs consist of physical properties of air pertinent 

to droplet dynamics modeling (air density and viscosity), model parameters relating to wind 

condition and unsteady motion of droplets, sprinkler design factors, sprinkler pressure head-

discharge relationship, minimum droplet size, spray evaporation rate, and numerical 

discretization parameters (Table 4). Air density vary as a function of temperature, atmospheric 

pressure (related to altitude), and humidity. Kinematic viscosity of air increases with temperature 

and could conceivably be a function of humidity as well. However, in the study reported here 

density and viscosity parameters used in model evaluation are those of standard condition (20oC 

and 1.0atm, and dry air). Considering the low altitude of the evaluation site (about 350.0m above 

mean sea level) and the mean air temperatures during the irrigation evaluations (Table 3), which 

were sufficiently close to the standard temperature (20oC or 68oF), such an approximation is 

deemed acceptable here. Future studies may explore the sensitivity of model output to the  

 

Table 4 Input data used in model evaluation, single-sprinkler indoor tests  

Density and kinematic viscosity of air at standard conditions (20oC, 1.0atm, and dry air); sprinkler pipe 

rise height and specification are listed in Table 3  

Variables Unit Dataset IV Dataset V Dataset VI Dataset VII 

Density of air kg/m3 1.205 1.205 1.205 1.205 

Kinematic viscosity of air m2/s 0.0000151 0.0000151 0.0000151 0.0000151 

Scale factor for wind effects on 

drag 

 

- 

 

0 

 

0 

 

0 

 

0 

 
Scale factor for wind effects on 

droplet drift 

 

- 

 

1.0 

 

1.0 

 

1.0 

 

1.0 

 
Drag correction parameter for 

acceleration effects 
- 0.0 0.0 0.0 0.0 

Minimum droplet diameter  m 0.0001 

 

0.0001 

 

0.0001 

 

0.0001 

 Angular discretization step size deg 0.5 

 

0.5 

 

0.5 

 

0.5 

 Grid square size, model m 0.25 

 

0.25 

 

0.25 

 

0.2 

 Spray evaporation fraction - 0.36 

 

0.34 

 

0.3 

 

0.33 

 Sprinkler pressure head m (psi) 28.1  35.2 42.2 49.9  
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interactive effects of nonstandard atmospheric conditions, through their effect on air viscosity 

and density. In addition, the pressure head-discharge function of the sprinkler, used in model 

evaluation computations, relates measured nozzle pressure heads with corresponding discharges. 

The minimum droplet diameters were set based on computational considerations (Section 3.4.3), 

while keeping in view its effect on the simulated sprinkler radial application rate. Model 

parameters, relating to wind effects on droplet drag and drift, were set to appropriate values for 

no-wind condition. The drag correction parameter for droplet acceleration effects were those 

found to yield a good fit between simulated and measured radial application rates.  

 

As described above, the simulated sprinkler radial application rates (dashed lines) are depicted  

in Figures 16a-16d, superimposed on the regression curves and measured datasets. The results 

show that the simulated data closely fit the respective regression curves. An aggregate 

comparison of the simulated radial application rate data with those of the regression curves, 

depicted in Figure 16e, also suggests a good agreement between the simulated data and data from 

the regression fit, with slight under prediction by the model close to the upper limit of the data 

range. The simulated sprinkler wetted radii are within 4.0% of the measured values and within 

2.0% of the estimates obtained based on the regression curve. Considering that the measured 

radial application rate patterns are specified at the (model) input in terms regression curves 

(Table 3), the fact that the simulated patterns compare well with the regression curves suggest 

the model performance is satisfactory. It can be reasoned that a better fit can be obtained if the 

sprinkler radial application rate, used in the numerical computation, is directly interpolated from 

the measured data. Such a functionality will be implemented in the model in a follow up study.   

 The simulated radial application rate curves represent plots of the average grid square 

precipitation rates along a sprinkler wetted radius, hence may not necessarily be smooth (Figures 

16a-16d). Experience with simulated data suggest that larger grid square sizes (about 0.5m and 

above) result in smooth application rate curve that fits well with the corresponding regression 

function in the distal half of the sprinkler wetted radius. However, computed radial application 

rates obtained with larger grid squares do not predict the high application rates near the sprinkler 

as well as those obtained with smaller grid squares. Note that this is consistent with the fact that 

the rate averaging is done over larger areas (grid squares), hence localized peaks and troughs are 
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smoothed out. At the same time the larger grid squares do not have the spatial resolution to 

capture the rapid increase in application rates near the sprinkler, hence resulting in under 

estimations of application rates there compared to grids with finer spatial resolutions. On the 

other hand, smaller grid square sizes (about 0.375m and lower) have the spatial resolution to 

yield radial application rate curves that track the regression functions well over the entire wetted 

radius of the sprinkler, hence used in the model evaluation computations performed here. The 

resulting curves, however, are more wiggly than those obtained with larger grid square 

dimensions (Figure 16). 

  

6.3.2 Single sprinkler evaluations under field condition  

 

Description of the apparatus used in the field tests 

A replica of the apparatus used in the indoor sprinkler evaluations (Figure 15) was 

constructed for the field study conducted in the research farm of the Maricopa Agricultural 

Center of the University of Arizona. The layout of the system and its components are depicted in 

Figure 17 and are described in the preceding section. The major components of the system, 

including the sprinkler head, riser pipe, and pump were the same as those used in the indoor 

study.  The objective of the field evaluation is to collect data on precipitation pattern about the 

sprinkler under field conditions, which (along with data from indoor sprinkler tests) will then be 

used in model calibration and evaluation. Precipitation pattern under wind is nonsymmetrical 

about the sprinkler, hence single sprinkler field evaluations require setting up a two-dimensional 

test-plot, with the test sprinkler placed at the geometric center of the evaluation plot. Figure 17 

depicts the test-plot used in the field evaluation, covering a square area of 29.6m29.6m, further 

subdivided into 324 grid units of 1.65m1.65m each. A rain gage placed at the center of each 

grid square is used to measure the average precipitation depth in a grid square. The specifications 

of the rain gages used in the field study are described in Section 6.3.1.  

 

Data description 

 A series of single-sprinkler field tests were conducted, with each test spanning a duration 

of 3.0h. Following the indoor evaluations, the test sprinkler was operated at four different  
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                                Figure 17 A sketch of the layout of the single sprinkler field test apparatus (plan view)  
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pressure heads: 28.1m, 35.2m, 42.2m, and 49.2m. During each irrigation evaluation the steady 

state pressure heads and discharges were measured. At the end an irrigation evaluation depths 

collected in the rain gages were recorded. A volume balance based approach is used to compute 

an estimate of the spray evaporation losses, as a function of applied volume and volume that 

reached the irrigated field surface.  

The basic volume balance procedure used in the current study to compute spray 

evaporation losses consist of: (i) assuming the precipitation depth collected in a rain gage is a 

representative average of the corresponding grid square, an estimate of the volume of 

precipitation that fell in a grid square is computed as the product of the collected depth and the 

grid square area; (ii) aggregation of the volume collected in grid squares over the test-plot yields 

precipitation volume that reached the irrigated field surface, and (iii) an estimate of the spray 

evaporation loss is then computed as the difference between applied volume and the precipitation 

volume that reached the irrigated field surface. It is generally considered that a single sprinkler 

operating under field conditions exert a lower influence on the microclimate of the irrigation 

evaluation plot and its surrounding than a field-scale sprinkler system does over the irrigated 

field. This suggests that there may be a limitation to the transferability of spray evaporation 

estimates, derived based on single sprinkler field test, to field-scale applications. However, the 

significance of this limitation need to be established through further study. If the limitation of the 

approach is found to be significant, spray evaporation loss estimation based measured 

meteorological data may need to be explored.    

Wind drift losses, defined here as a fraction of the applied volume that fell outside the 

test-plot, have occurred during some of the field evaluations conducted as part of this study. 

However, the datasets used in model evaluation are those with precipitation patterns completely 

contained within the test-plot. Hence, wind drift losses are considered negligible for these 

datasets.  

 Four of the datasets collected in the field tests are used in model calibration and 

evaluation. Wind velocity and related climatic data measured during the field evaluations are 

summarized in Table 5. Each dataset correspond to one of the four sprinkler nozzle pressure 

heads listed above. Pertinent weather data during the field tests were obtained from the local 

AZMET station, which include air temperature, dew point temperature, relative humidity, and  
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Table 5 Measured data during single sprinkler field evaluations 

  The steady state pressure heads under which the sprinkler was operated during each test and the sprinkler riser pipe  

  height and specification are summarized in Table 3, the grid square size used in the field evaluations is  

  1.65m1.65m. 

 

vapor pressure deficit and the hourly average wind speed and direction. Considering the average 

air temperature, dew point temperature, relative humidity, and vapor pressure deficit during the 

irrigation evaluation, maximum spray evaporation should occur in the irrigation evaluation event 

in which dataset VIII was collected, while the weather data for dataset XI should represent the 

least favorable condition for spray evaporation. Datasets IX and X fall in between, with dataset 

IX representing a more favorable condition for evaporation compared to that of dataset X. It can 

be observed from Table 5 that the computed spray evaporation follows the pattern noted above 

based on weather data. In addition, it should also be mentioned that the wind speed for dataset 

VIII is significantly higher than the wind speeds associated the other datasets, which could have 

some impact on spray evaporation losses. Considering that spray evaporation is computed here 

with a volume balance approach, data on air temperature, dew point temperature, relative 

humidity, and vapor pressure deficit are included in Table 5 only to explain the observed spray 

evaporation pattern and for sake of data completeness. On the other hand, measured wind speed 

Variables Unit Dataset VIII Dataset IX Dataset X Dataset XI 

Time of 

irrigation 

evaluation 

Date - 11/12/2013 11/14/2013 11/19/2013 11/26/2013 

Time 

of 

day 

Start - 10:55AM 12:28PM 11:15AM 9:57AM 

End - 1:55PM 3:28PM 2:15PM 12:57PM 

Duration h 3.0 3.0 3.0 3.0 

Hourly  average 

wind speed 

 

1st hour  

m/s 

 

1.91 1.24 0.89 1.51 

2nd hour 2.80 1.04 1.51 1.91 

3rd hour 4.49 1.09 1.69 3.07 

Hourly average 

wind vector 

azimuth  

1st hour  

deg 

 

170.0 316.0 108.0 160.0 

2nd hour 218.0 259.0 132.0 178.0 

3rd hour 245.0 217.0 137.0 243.0 

Evaporation fraction  - 0.58 0.46 0.35 0.2 

Average temp 
oF 85.3 80.2 72.7 60.8 

Average dew point temp 
oF 35.5 43.5 46.4 44.8 

Average relative humidity % 17.2 27.4 39.3 56.8 

Av. vapor pressure deficit kPa 3.5 2.5 1.7 0.8 
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and direction are essential inputs to the precipitation pattern simulation model. The hourly 

average wind data was used in model calibration and evaluation, instead of the average value for 

the duration of the test irrigation. This allows for wind effect on precipitation pattern to be 

specified with a high degree of temporal resolution. However, it also entails a requirement that 

wind related model parameters be specified for each wind speed and direction pair, resulting in 

increased complexity of parameter estimation. It also increases the computational time, because 

separate simulations need to be conducted for each hourly average wind velocity.         

 

Model calibration 

 Model calibration here refers to estimation of pertinent model parameters: scale factor for 

wind effects on drag, ζ1, and droplet drift, ζ2, and empirical drag correction parameter for 

acceleration effects, ζ3 (Eqs. 13-18). As highlighted in Section 4.2.2 model calibration is 

conducted through trial and error. The approach involves repeated runs of the model with 

different parameter sets and visual comparison of the simulated and measured precipitation depth  

contours and the corresponding three dimensional surfaces. Measured precipitation depths were 

obtained as part of the field evaluations described in the preceding section. The qualitative 

criteria used in comparing measured and simulated precipitation contours and surfaces are: 

resemblance of the patterns and areal extents of the simulated and measured precipitation 

contours and corresponding three dimensional surfaces as well as differences between the 

measured and computed maximum precipitation depths.  

For each of the dataset used in model evaluation, the parameter sets (ζ1, ζ2, and ζ3 ) that 

resulted in acceptable comparisons between the measured and computed precipitation patterns 

are summarized in Table 6. The values of the scale factor for wind effects on drag, ζ1, vary 

between the range 1.75, obtained for dataset IX, to 4.5 for Data set VIII. On the other hand, the 

scale factor for droplet drift, ζ2, varies between 0.2 and 3.5, obtained for datasets X and XI, 

respectively. The drag correction parameter for acceleration effects, ζ3, varies in the narrow 

range of -0.275 to -0.15. Experience with results of numerical simulation suggests that the effects  

of ζ1 and ζ2 on precipitation distribution about the sprinkler are correlated (see also Eq. 19). The  
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 Table 6 Input data used in numerical model evaluation, comparison with field data   

  Density and kinematic viscosity of air at standard conditions (20oC, 1.0atm, and dry air) and other pertinent data  

  are given in Table 5 

 

fact that these parameters are scale factors implies that they should generally be greater than 

zero. Preliminary results suggest that maximum values of both ζ1 and ζ2 may not exceed 5.0 and 

realistic precipitation patterns compatible with the predominant wind directions, during the 

evaluations, were obtained when ζ2 < ζ1. The exact relationship between droplet acceleration and  

unsteady drag in moderate to high Reynolds numbers, which include the range common in 

sprinkler droplet dynamics modeling, seem to be not well established (Temkin and Kim, 1980; 

Aggarwal and Peng, 1995). Hence, in principle there is no constraint in the algebraic sign of ζ3. 

As can be noted from Eq. 23, ζ3 >0 implies the effect of droplet acceleration on the steady state 

drag coefficient is to increase it, while ζ3 < 0 results in reduced drag compared to an equivalent 

steady state condition. Simulation results have consistently shown that increasing ζ3, while 

keeping all other factors constant, results in a reduction in the areal extent of the precipitation 

pattern and a slight concomitant increase in the peak precipitation depth. On the other hand, 

decreasing ζ3 has the opposite effect on precipitation distribution. Note that these observations 

are consistent with the effect of ζ3 on the steady state drag coefficient described above. As can be 

Variables Unit Dataset VIII Dataset IX Dataset X Dataset XI 

Density of air   kg/m3 1.205 1.205 1.205 1.205 

Kinematic viscosity of air  m2/s 0.0000151 0.0000151 0.0000151 0.0000151 

Scale factor for 

wind effects on 

drag (1) 

1st hour 
- 

 

4.5 4.0 2.0 2.5 

2nd hour 4.5 1.75 2.0 3.0 

3rd hour 4.5 1.75 3.0 4.5 

Scale factor for 

wind effects on 

droplet drift (2) 

1st hour 
- 

 

1.75 1.5 0.2 1.5 

2nd hour 2.0 0.3 0.25 2.5 

3rd hour 3.0 0.3 0.5 3.5 

Drag correction parameter for 

acceleration effects (3) 
- -0.275 -0.175 -0.15 -0.275 

Minimum water droplet  m 0.0003 0.00068 0.0008 0.0006 

Angular discretization step 

size  

deg 1.5 1.5 1.5 1.5 

Grid square size, model m 1.5 1.5 1.5 1.5 

Evaporation fraction  - 0.58 0.46 0.35 0.2 
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noted form Table 6, the ζ3 values that yield computed precipitation patterns that compare 

favorably with the measured data area all negative. Although some physical meaning can be 

attributed to this parameters when they are used in the context droplet dynamics, it ought to be 

stressed that, when considered in the context of precipitation pattern simulation about a sprinkler, 

the parameters are basically shape fitting constants.           

 For numerical simulation purposes, the test-plot is discretized into grid squares of 

1.5m1.5m matching closely the spatial resolution with which the field evaluation plot was 

discretized (1.65m1.65m). Note that the droplet volumetric application rate is computed here 

based on the angular discretization steps given in Table 6. The minimum droplet diameters 

(Table 6) were set such that the resulting maximum precipitation depths were close to the field 

observed values. The minimum droplet diameters used for datasets IX, X, and XI are on the high 

side. Overall simulated maximum precipitation depths were significantly larger than field 

observed values, when the minimum droplet sizes are set to significantly smaller values than 

those given in Table 6. Field experience shows that even at moderate wind speeds (about 2.0m/s 

and lower) some fraction of the precipitation is carried by wind to considerable distances outside 

the irrigation evaluation plot in the form of mist. It is likely that finer droplets (perhaps those in 

the sub-millimeter scale) originating from the irrigation stream or formed through secondary 

atomization may account for much of this water. This might have contributed to the much more 

diminished peak and diffused precipitation distribution observed with the measured data 

compared to simulation results. The physical mechanism for this may not entirely be spray 

evaporation and it is possible that processes other than those considered within the current 

modeling framework are contributing factors. On the other hand, considering the calibration 

procedure used here (a trial and error approach to estimate seven parameters) the parameter 

estimates are evidently suboptimal. Hence, if model calibration is performed with optimization 

based inverse modeling functionality a more acceptable fit between simulated and measured 

precipitation patterns can be obtained, without the need to use a relatively higher minimum 

droplet diameters mentioned above. In any case, additional study is required to ascertain this.       
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Model evaluation  

At the scale of an irrigated field a sprinkler irrigation system precipitation pattern 

represents the aggregate effects of sprinkler head design factors, system hydraulics,  

topographic and geometric factors as well as the ambient weather condition, including wind 

speed and direction. Assuming a precipitation rate less than irrigation application rate, ultimately 

it is this pattern that determines the field-scale irrigation performance: irrigation uniformity, 

efficiency, and the degree to which irrigation requirement is satisfied in any given irrigation 

event. Hence, a modeling capability for a field-scale sprinkler irrigation performance 

characterization (with potential applications in irrigation system design, management, and 

evaluation) requires coupling a field-scale sprinkler irrigation hydraulic modeling component 

with a submodule for sprinkler irrigation precipitation pattern simulation and a root-zone soil 

water balance subroutine. This implies that a functional evaluation of the sprinkler irrigation 

precipitation pattern simulation model, developed here, can be conducted by comparing 

measured and simulated field-scale irrigation performance, obtained for a system of overlapping 

sprinklers. Given the sprinkler layout and spacing, the field-scale precipitation pattern 

corresponding to a measured data can be generated by overlapping the single sprinkler 

precipitation distribution derived through field evaluation. For a given set of model parameters 

(Table 6) as well as sprinkler layout and spacing, the field-scale precipitation pattern and 

corresponding performance can be computed with the sprinkler precipitation pattern simulation 

model presented here. 

 A substantial simplification of the model evaluation process can be achieved if the 

following conditions are assumed: (i) nozzle pressure head is the same, throughout the irrigated 

field, as that used in the single sprinkler field tests and (ii) weather condition is the same as that 

of the field tests. With these simplifications in place model evaluation can be conducted on the 

basis of a single completely overlapped field-plot. A completely overlapped field-plot is, defined 

here, as a rectangular area circumscribed by four inner and twelve outer sprinklers arranged in 

the spatial configuration depicted in Figure 18, with an assumed sprinkler spacing of 

10.0m×10.0m. Note that any given point within a completely overlapped plot receives 

precipitation from all the sprinklers it can potentially receive if it were situated in an irrigated  

field. Irrigation water distribution within such a field-plot is generally considered representative 
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      Figure 18 Layout of the overlapped sprinkler set used for model evaluation purposes 

 

of a large fraction of a sprinkler irrigated field, except a narrow strip of land around the edges of 

the field. A similar sprinkler layout configuration was described by Playan et al. (2006) in the 

context of model evaluation. The irrigation performance index commonly used in such a context, 

and is used in the current study, is irrigation uniformity defined in terms of Christiansen’s 

uniformity coefficient and low-quarter distribution uniformity. Hence, a comparison of irrigation 

uniformity along with average, minimum, and maximum collected depths over the completely 

overlapped plot, derived on the basis of the simulated and measured precipitation patterns, is 

used to evaluate the performance of the model developed as part of the current study.  

 The irrigation uniformity indices and irrigation depths for the completely overlapped plot 

(Figure 18) computed based on the measured and simulated precipitation patterns are 

summarized in Table 7. Note that the measured precipitation patterns used in model evaluation 

correspond to the datasets summarized in Table 6.  For all the datasets the model predicted 

Christiansen’s uniformity coefficient is within 4.7% of the UCC computed on the basis of the 

measured precipitation data, with the average error being 2.5% of the measured value. The  

maximum error between the simulated and measured low-quarter distribution uniformity is 7.2%  
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Table 7 Irrigation uniformity and depths computed based on measured and simulated  

             precipitation patterns of the overlapped sprinklers   

Data description 

Parameters 

UCC DUlq Dmax Dmin Dav 

- - mm Mm mm 

Dataset  VIII 

Measured  0.845 0.747 5.3 2.6 3.8 

Simulated 0.805 0.693 5.1 1.9 3.5 

Error (%) 4.7 7.2 3.8 26.9 7.9 

Dataset IX 

Measured  0.892 0.848 7 4.5 5.5 

Simulated 0.9 0.837 6.6 3.6 5.0 

Error (%) 0.9 1.3 5.7 20.0 9.1 

Dataset X 

Measured  0.864 0.782 8.7 4.5 6.9 

Simulated 0.829 0.737 9.8 1.5 7.0 

Error (%) 4.1 5.8 12.6 66.7 1.5 

Dataset XI 

Measured  0.86 0.77 12.4 6.6 9.4 

Simulated 0.862 0.795 13.5 5.4 8.9 

Error (%) 0.2 3.2 8.9 18.2 5.3 

Average error   % 2.5 4.4 7.8 33.0 6.0 

UCC = Christiansen’s uniformity coefficient, and DUlq = Low-quarter distribution uniformity; Dmax = maximum 

depth collected, Dmin = minimum depth collected, Dav = average depth collected, and 

100
Simulated

SimulatedMeasured
Error

|| −
=  

 

of the measured value, while the average error is 4.4% of the measured DUlq. The model was 

able to predict the maximum (Dmax) and average (Dav) collected precipitation depths, for all the 

datasets, with maximum errors of 12.6% and 9.1%, respectively, of the measured depths. 

Average deviations of the simulated Dmax and Dav from the measured values are 7.8% and 6.0%, 

respectively. The largest error between model prediction and field observation was obtained for 

the minimum collected precipitation depths, with a maximum of 66.7% for dataset X and an 

overall average of 32.9%. Overall the simulated irrigation uniformity as well as the average and 

maximum collected precipitation depths are in very good agreement with those computed based 

on field measurements. Model’s prediction of minimum collected precipitation depths is rather 

poor. However, a close observation of the simulated precipitation depth data for dataset X, the 

data with the largest error between the simulated and measured Dmin (66.7%), shows that if the 

collected precipitation depth data is arranged in ascending order the next larger value to the 
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minimum (1.5mm) is 4.8mm, which is within 6.7% of the measured Dmin (4.5mm). This 

represents a tenfold reduction in error, which clearly illustrates that the minimum collected 

depth, being an extremum point in the data, is not necessarily indicative of the larger trend in the 

precipitation pattern, hence not as significant as the other parameters: uniformity indices and the 

average depth. 

 

6.3.3 Potential application to field-scale sprinkler irrigation simulation and performance  

        evaluation   

 The sprinkler irrigation precipitation pattern simulation model developed as part of the 

study reported here requires significant further development in terms of inverse modeling,  

numerical efficiency, a more specific definition of parameter ranges, development of 

modeling/field approaches that accounts for differences in microclimatic effects of irrigation 

under single sprinkler and field-scale conditions. In addition, improvements in the predictive 

accuracy of the droplet dynamics model that can potentially be realized by implementing a 

numerical solution of a form of the governing equation with a more rigorous physical basis, 

derived as part of this study (Zerihun and Sanchez, 2014b), may need to be examined. Evidently, 

these are outstanding issues that require further research. Nonetheless, results stemming from the 

limited study presented here (Section 6.3.2) and past studies (e.g., Vories et al., 1987; Playa et 

al., 2006) suggest that sprinkler irrigation precipitation pattern simulation models can estimate 

irrigation performance for a system of overlapping sprinklers with reasonable accuracy.  

In order to highlight the potential application of the simulation model, developed here, in 

the determination of field-scale irrigation performance, a hypothetical scenario in which a solid 

set sprinkler irrigation system irrigates a rectangular field of 96.0m174.0m is considered. The 

sprinkler system consists of a 5 (127.0mm) mainline supplying water to ten equally spaced 2.5 

(63.5mm) laterals. The spacing between laterals is 10.67m (35.0ft). Twenty sprinklers mounted 

on riser pipes (0.53m high) are placed along each lateral at a regular spacing of 9.16m (30.0ft). 

The mainline is laid at a slope of 0.01% and the laterals are installed along a slope of 0.055%. 

Considering the same sprinkler as that used in the single sprinkler field evaluations and assuming 

a weather condition comparable to that observed for dataset XI (Table 5), it can be noted that  

pertinent (precipitation pattern simulation) model parameters are those derived for nozzle 

pressure head of 49.2m, which will henceforth be referred to as the calibration pressure head.  
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Given the field-scale spatial distribution of sprinkler pressure heads at the input, the precipitation 

pattern simulation model can generate the corresponding field-scale spatial distribution of 

irrigation depths (Section 4.3.2). A solid-set sprinkler irrigation hydraulic model, developed by 

the authors (Zerihun and Sanchez, 2014a), was used to simulate the field-scale spatial 

distribution of nozzle pressure heads. With a total dynamic head at the system inlet set at 

150.75m, and an assumed elevation of 100.0m, the simulated maximum, minimum, and average 

nozzle pressure heads over the field are 50.0m, 48.8m, and 49.1m, respectively. This represents a 

maximum absolute deviation of 0.8m from the calibration pressure head (49.2m). The 

precipitation pattern simulation model parameters derived for the calibration pressure head are 

used for all the sprinklers in the field. The assumption is that field-scale variation in pressure 

head from the calibration pressure head is sufficiently small to induce appreciable deviation in  

sprinkler precipitation pattern from that obtained for the calibration pressure head.  

 

The model output consists of a comprehensive set of field-scale irrigation performance indices: 

application efficiency, Ea, irrigation requirement index, Ir, and uniformity (UCC and DUlq), 

along with average, Dav, maximum, Dmax, and minimum, Dmin, depths. The computed Ea is 

66.7%, Ir is 0.848, and Dav is 9.1mm with Dmax and Dmin of 15.4mm and 4.6mm, respectively. 

Assuming that precipitation rates are less than soil intake rates, the computed precipitation depth 

at any given point in the field surface is partitioned into beneficial and deficit/excess fractions 

based on the field capacity approach. The simulated field-scale UCC and DUlq is 0.858 and 

0.789, respectively, which represent high irrigation uniformity. Note that model predicted 

irrigation uniformity compares reasonably well with irrigation uniformities obtained for solid-set 

sprinkler systems with comparable system hydraulics as well as topographic and ambient 

weather conditions (Zerihun et al., 2011 and Zerihun and Sanchez, 2012).      

The simulated field-scale spatial distribution of precipitation depths is summarized in 

Figure 19a. The spatial distribution pattern is dominated by localized peaks and troughs, hence a 

larger field-scale pattern could not be discerned. To the best of authors’ knowledge, a published 

sprinkler precipitation depth data (measured or simulated) at the scale of an irrigated field does 

not exist. Hence, the simulated field-scale spatial distribution of precipitation depths cannot be 

compared with measured data to test its plausibility. On the other hand, measured depths
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Figure 19 Contours depicting the spatial distribution of sprinkler applied irrigation water (precipitation) that reached the irrigated field  

     surface for sprinkler and lateral spacing’s of 9.16m10.67m: (a) Field-scale distribution and (b) Plot-scale distribution    
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showing the spatial distribution of precipitation at the scale of a test-plot (a completely 

overlapped plot) exist (e.g., Zerihun et al., 2011; Zerihun and Sanchez, 2012). Hence, measured 

plot-scale precipitation depth contours can be compared with simulated ones (extracted from the 

field-scale data, Figure 19a) to asses the broad plausibility of the results of the field-scale 

simulation. Accordingly, Figure 19b shows a plot-scale precipitation depth data extracted from 

the field-scale data summarized in Figure 19a. Experience with measured plot-scale precipitation 

distribution data suggests that the simulated test-plot scale contours depict a pattern that is not 

untypical of irrigation distribution at a test-plot scale. Considering that the field-scale spatial 

distribution of precipitation depths is an aggregation of multiple plot-scale patterns, with limited 

variation, the preceding observation lends some credence to the plausibility of the simulated 

field-scale precipitation pattern.   

 

For purpose of comparison consider a scenario in which a sprinkler system, which is exactly the 

same in all respects as the one described in the preceding section, but has a larger lateral spacing 

(13.67m or 44.85ft). With such spacing the sprinkler system requires eight laterals to cover the 

entire field (96.0m174.0m). Each lateral supplies twenty sprinklers placed at a constant spacing 

of 9.16m. The corresponding field-scale sprinkler pressure head distribution was simulated with 

the hydraulic model referenced above. Considering a total dynamic head of 150.75m and 

elevation at the sprinkler system inlet of 100.0m, the simulated field wide pressure head vary in 

the range 49.2m to 50.1m, with an average of 49.4m. This represents a maximum field-scale 

nozzle pressure head variation of 0.9m with respect to the calibration pressure head. Assuming 

the pressure head variation is sufficiently small, the model parameters derived for the test 

conditions are applied over the field.  

 Simulated field-scale spatial distribution of precipitation depths are depicted in Figure 

20a. The corresponding field-scale UCC is 0.781 and DUlq is 0.682. Compared to the system 

with a smaller lateral spacing (10.67m) described above, this represents a decrease in UCC and 

DUlq of about 9.0% and 14.0%, respectively. The observed trend in terms of decreased 

uniformity with increased spacing (while keeping all other factors constant) is consistent with the 

effect of spacing on irrigation uniformity. The model computed Ea is 65.7% and Ir is 0.672 with 

Dav, Dmax, and Dmin of 7.1mm, 14.5mm, and 3.9mm, respectively. 
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Figure 20 Contours depicting the spatial distribution of sprinkler applied irrigation water (precipitation) that reached the irrigated field  

     surface for sprinkler and lateral spacing’s of 9.16m13.67m: (a) Field-scale distribution and (b) Plot-scale distribution 
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Application efficiency remained nearly unchanged from that obtained for lateral spacing of 

10.67m (66.7%), whereas the irrigation requirement index decreased by 21.0% from 0.848 for 

lateral spacing of 10.67. Applied volumes in the two scenarios are significantly different: 

223.4m3 for the system with 10.67m lateral spacing and 179.3m3 for the system with 13.67m 

spacing. It can be noted that this is mainly due to the number of sprinklers in the field, rather 

than pressure head variations. The fact that application efficiency remains essentially unchanged 

in the two irrigation scenarios implies that, although applied volumes are different, the fraction 

of the applied volumes retained in the crop root zone is nearly the same in both cases. This 

implies that for the system with 13.67m spacing the total volume that is retained in the crop root 

zone is only about 65.6% of 179.3m3 (117.6m3), as opposed to the 148.8m3 (two-thirds of 

223.4m3) for the system with lateral spacing of 10.67m. Because the irrigation requirement is the 

same (required depth, 10.5mm, and irrigated area remain unchanged) for both systems, the 

substantial difference in the computed irrigation requirement index can be explained by the 

differences in the fraction of the irrigation volume that is retained in the crop root zone.  

The spatial distribution of precipitation for a completely overlapped plot, extracted from 

the simulated field-scale data (Figure 20a), is depicted in Figure 20b. It can be noted from Figure 

20b that the precipitation contours for lateral spacing of 13.67m show a depression (an area of 

relatively lighter precipitation) that runs across the field plot in a direction perpendicular to the 

mainline (between distances of about 16.5m and 19.0m). The fact that this area of light irrigation  

runs parallel to the laterals indicates that it is related to the reduction in precipitation overlap 

resulting from increased lateral spacing (compared to the smaller spacing of 10.67m). 

 

Chapter 7 Sprinkler irrigation uniformity field evaluations                                                    

 

Irrigation field evaluations were conducted in growers’ fields in the Yuma Valley Irrigation 

Districts. Four datasets, each in a different field, were collected as part of the field studies 

presented here. Three test-plots were installed in each of the irrigated fields. A test-plot covers a 

rectangular area of 30.0ft35.0ft, which is discretized into 42 grid squares measuring 5ft5ft. A 

rain gage is placed in each of the grid squares. The tests-plots were installed along the field 

diagonal and each test-plot is considered to be representing an equal fraction of the total area of 

the irrigated field. The data from test-plot measurements were used to compute plot scale 
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irrigation uniformity estimates. The test-plot scale irrigation uniformity estimates were then 

scaled up to field level through averaging. The field and computational procedure used in the 

current study, to determine test-plot and field-scale irrigation uniformity, is discussed by Zerihun 

et al. (2011). The rain gages used here are described in Section 6.3.1. The average wind 

velocities presented in subsequent discussion are obtained from the Yuma Valley AZMET 

station and hence represent average values for the area during the uniformity evaluations: i.e., 

they are not average wind velocities measured in the immediate ambience of the irrigated fields. 

A summary of the measured plot scale and field-scale irrigation uniformity indices as well as the 

maximum, minimum, and average depths is given in Table 8.  

 

Irrigation evaluation I: The first irrigation evaluation was conducted in a grower’s field with an 

irrigated area of 630.0ft1290.0ft. Irrigation duration was 3.0h. The average wind speed in the 

Yuma Valley during the irrigation is about 1.2 m/s. Computed Christiansen’s uniformity 

coefficient values are 0.883, 0.847, and 0.864 for the upstream end, middle, and downstream end 

test-plots, respectively (Table 8). The field-scale maximum and minimum collected precipitation 

depths are 7.6mm and 19.1mm, respectively. The test-plot scale average depths vary from 

12.4mm for the middle test-plot to 13.3mm for the downstream end test-plot, with the average 

depth for the upstream end test-plot being 13.1mm. Distribution uniformity is 0.820 for the 

upstream end test-plot, 0.731 for the middle test-plot, and is 0.803 for the downstream end test-

plot. The field-scale average UCC and DUlq are 0.864 and 0.784, respectively. The computed 

UCC and DUlq for all the test-plots can be considered sufficiently high.  

 

Irrigation evaluation II: The second irrigation field evaluation event was conducted in a section 

of a grower’s farm measuring 420.0ft along the mainline and 1290.0ft along the laterals. The 

average wind speed in the Yuma Valley area during the irrigation evaluation is 4.5m/s. The 

duration of the field evaluation was 3.0h. The test-plot UCC values are 0.869, 0.818, and 0.851 

for the upstream end, middle, and downstream end test-plots, respectively (Table 8). Test-plot 

scale DUlq varies in the range 0.716 to 0.791. The field-scale average UCC and DUlq are 0.846 

and 0.761, respectively. Both the field-scale UCC and DUlq can be considered acceptably high. 

Although the relatively high wind speed in the Yuma Valley during the irrigation evaluation 

suggests a more pronounced adverse effect on uniformity, the measured uniformity levels 
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indicate that wind speed in the immediate ambience of the irrigated field might have been 

appreciably lower. The collected precipitation depths vary from a minimum of 7.2mm to 

19.1mm over the irrigated field. The field-scale average collected depth is 14.4mm. 

 

 Table 8 Field-scale irrigation application uniformity, maximum, minimum, and average  

              depths                  

 

Parameters 

 

Irrigation evaluation I 

Test-plot scale  

Field-scale   
  

Test-plot   

1  2 3 

UCC (-) 0.883 0.847 0.864 0.864 

DUlq (-) 0.820 0.731 0.803 0.784 

Dav (mm) 13.1 12.4 13.3 12.9 

Dmin (mm) 9.5 7.6 9.5 7.6 

Dmax (mm) 17.2 16.7 19.1 19.1 

Area (acre)  18.9 

 Irrigation evaluation II 

UCC (-) 0.869 0.818 0.851 0.846 

DUlq (-) 0.791 0.716 0.777 0.761 

Dav (mm) 14.8 14.3 14.0 14.4 

 Dmin (mm) 9.5 7.3 7.2 7.2 

Dmax (mm) 19.1 19.1 19.1 19.1 

Area (acre)  12.6 

  Irrigation evaluation III  

UCC (-) 0.728 0.645 0.728 0.7 

DUlq (-) 0.605 0.488 0.619 0.571 

Dav (mm) 6.6 7.3 8.5 7.4 

Dmin (mm) 2.9 1.9 3.3 1.9 

Dmax (mm) 14.3 19.1 19.1 19.1 

Area (acre)    9.0 

  Irrigation evaluation IV  

UCC (-) 0.724 0.776 0.744 0.748 

DUlq (-) 0.549 0.614 0.583 0.582 

Dav (mm) 12.6 14.3 12.6 13.2 

Dmin (mm) 4.8 6.7 4.8 4.8 

Dmax (mm) 19.1 19.1 19.1 19.1 

Area (acre)    3.4 

    Datasets I, II, III, and IV were collected on February 23 and 28 and March 1 and 2 of 2013, respectively 
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Irrigation evaluation III: The third field evaluation was conducted in a part of a grower’s field 

and covers an area of 315.0ft1230.0ft. Irrigation duration was 3.0h and 24min. The average 

wind speed in the Yuma Valley during the irrigation is about 3.3m/s. The computed test-plot 

scale UCC values are 0.782, 0.645, and 0.728 for the upstream end, middle, and downstream end 

test-plots, respectively (Table 8). DUlq vary between 0.488 for the middle test-plot and 0.619 for 

the downstream end test plot. The field-scale collected precipitation depths vary over a wider 

range of 1.9mm to 19.1mm. Average depths for the test-plots vary between 6.6mm for the 

upstream end test-plot to 8.5mm for the downstream end test-plot, with the average depth for the 

middle test-plot being 7.3mm. The computed field-scale UCC and DUlq values of 0.7 and 0.571, 

respectively, fall well short of the irrigation uniformity levels considered satisfactory for solid-

set sprinkler systems. Average wind speed in the Yuma Valley, during the irrigation evaluation, 

is appreciably higher than what is considered conducive for higher uniformities. However, it is 

possible that higher wind speeds may not necessarily be the only factor contributing to the low 

irrigation performance. For instance the relatively lower uniformity (both UCC and DUlq) 

computed for the middle test-plot, compared to the rest of the test-plots in the field, points to a 

localized routine maintenance issue and/or improper setting of sprinkler riser pipes as the 

possible causes. Overall, the relatively poor field-scale DUlq suggests that an evaluation of 

current irrigation practices and the hydraulics of the irrigation systems may be needed to 

determine the contributing factors. 

 

Irrigation evaluation IV: The fourth irrigation uniformity evaluation event was conducted in a 

section of a grower’s farm measuring 245.0ft along the mainline and 600.0ft along the laterals. 

The average wind speed in the Yuma Valley area during the irrigation evaluation is 2.2m/s. The  

duration of the field evaluation was 3.0h. The test-plot UCC values are 0.724, 0.776, and 0.744 

for the upstream end, middle, and downstream end test-plots, respectively (Table 8). Test-plot 

scale DUlq varies in the range 0.549 to 0.614. The collected precipitation depths vary over a 

relatively wider range, between a minimum of 4.8mm and a maximum of 19.1mm over the 

irrigated field. The field-scale average collected depth is 13.2mm. While the computed field-

scale UCC value of 0.748 can be considered acceptable, the field-scale DUlq value, of 0.582, is 

low. The average wind speed in the Yuma Valley during the irrigation evaluation does not 

suggest that wind may have significant adverse effect on irrigation uniformity. As can be noted 
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from Table 8, irrigation uniformity as measured by DUlq is poor across the field. Hence, this 

points to a need for evaluating current irrigation practices and the hydraulics of the sprinkler 

systems so as to determine the factors contributing to the low field-scale and test-plot scale 

irrigation uniformities.  

 

Chapter 8 Summary and Recommendations  

 

With increased use of solid set sprinkler systems for season long vegetable production, uniform 

and efficient application of irrigation water with these systems has become a concern for growers 

in the Yuma Valley Irrigation Districts. Development of guidelines for efficient irrigation 

requires the evaluation of existing systems and current operational practices, identification of 

limitations if any, and the development of design and management tools.   

 Over the last couple of years (2010-2013) authors have undertaken field and modeling 

studies of solid set sprinkler irrigation systems in the Yuma Valley Irrigation Districts, the results 

of which were documented in a series of publications (e.g., Zerihun et al., 2011; Zerihun and 

Sanchez, 2012). An important outcome of the field studies is the development of a procedure for 

field-scale irrigation uniformity evaluations. In addition, results of the irrigation evaluations 

suggest that field-scale irrigation application uniformities in the Yuma Valley Irrigation Districts 

are typically high (average field-scale UCC and DUlq of about 0.85 and 0.75, respectively). 

Irrigation uniformity evaluations conducted in growers’ fields as part of the current study largely 

confirms these results with measured field-scale UCC and DUlq for two of the fields exceeding 

0.83 and 0.75, respectively. However, computed field-wide uniformity levels for two more fields 

covered in the current study fell appreciably short of the level considered satisfactory for solid-

set sprinkler systems (with UCC < 0.75 and DUlq≤0.58). These results point to a need for a 

follow up (field and modeling) study to determine the factors contributing to the low 

performance, through evaluation of current irrigation (maintenance and operational) practices 

and the hydraulics of the sprinkler systems in those fields. In addition, the field studies have also 

shown that, even when field-scale irrigation uniformities are high, appreciable variations exist 

between test-plot scale uniformities within a field.  

An efficient and robust sprinkler irrigation model with a capability to fully characterize 

the performance of a field-scale system can be used as a flexible and inexpensive tool for system 
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design, management, and evaluation. However the development of such a model remains a 

challenge. As a step toward this goal, a sprinkler irrigation hydraulic model that can simulate the 

spatial distribution of nozzle pressure head and discharge over an irrigated field -  given the 

system hydraulic, geometric, and topographic characteristics - was developed and evaluated with 

field data (Zerihun et al., 2014; Zerihun and Sanchez, 2014a). This model also has a functionality 

for computing field wide irrigation performance based on test-plot scale field measurements. In 

addition, the modeling and field studies conducted by the authors also show that a typical 

sprinkler system in the Yuma Valley Irrigation Districts has a robust hydraulic design. The 

implication is that system performance should exhibit very low sensitivity to appreciable changes 

in pipe hydraulic resistance characteristics and field slopes, provided the systems are properly 

set, maintained, and operated under conducive weather condition. However, the studies have also 

noted that high irrigation performance does not necessarily translate into high economic return.   

As a follow up to the modeling studies, described above, during 2013 authors have been 

working on the development of a sprinkler irrigation precipitation pattern simulation model 

capable of computing the spatial distribution of irrigation about sprinklers taking into account 

sprinkler design factors, sprinkler riser pipe height, nozzle pressure heads, and wind effects. 

Following the established pattern (Fukui et al., 1980; von Bernuth and Gilley, 1984; Seginer, et 

al., 1991; Carrion, et al., 2001; Playan et al., 2006), the model consists of two main components. 

A semi-empirical procedure was used to determine droplet population size, diameter ranges, and 

volumetric application rates as well as model parameters, as related to acceleration and wind 

effects on droplet motion. A physically based droplet dynamics model is used to simulate droplet 

motion, between the sprinkler nozzle and its eventual destination on the irrigated field surface. 

Equations that form the basis of the droplet dynamics modeling functionality developed here 

were derived based on a combination of established ideas proposed in earlier studies, cited 

above, and also new concepts formulated as part of the current study (Zerihun and Sanchez, 

2014b). The set of nonlinear ordinary differential equations, governing droplet motion through 

the ambient air, derived as such are solved numerically with an embedded Runge-Kutta formulas 

consisting of a fourth-fifth order pair (Mathewes and Fink, 2004; Press et al., 1997; Burden et al., 

1981). In addition, as part of the study reported here the physics of droplet dynamics is reviewed 

in some detail in an accompanying document. Based on a relatively rigorous physical analysis of 

droplet motion and wind effects on droplet drift and drag an alternative form of the nonlinear 
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differential equations, describing an impulsively started droplet motion through a viscous fluid 

(e.g., ambient air) that could be in uniform horizontal motion itself, was derived by the authors 

and is presented in the accompanying document. 

Evaluation of the sprinkler precipitation pattern simulation model was conducted based 

on a comparison of model output with measured data and through theoretical analyses. The 

satisfactory agreement obtained between the output of the numerical droplet dynamics submodel 

and a simplified analytical model, under applicable conditions, suggest that the representation, in 

the numerical model, of the physics underlying droplet dynamics is sound. In addition, analyses 

of output of the numerical droplet dynamics model under wind conditions show that model 

predictions are largely consistent with intuitive physical reasoning. Simulated sprinkler radial 

precipitation patterns, for a range of nozzle pressure heads, compare reasonably well with 

measurements obtained under no-wind conditions. Furthermore, a limited functional evaluation 

of the sprinkler precipitation pattern model, based on a comparison of simulated and measured 

irrigation uniformity and precipitation depths, suggest that the accuracy of the model is 

satisfactory.  

   The potential application of the precipitation pattern simulation model in field-scale 

irrigation performance evaluation was explored. The results of the field-scale simulation study 

suggest that the development of a coupled hydraulic, precipitation pattern, and soil water flow 

simulation model for use in field wide irrigation performance evaluation is technically feasible. 

However, for the coupled field-scale irrigation model to be efficient and practically useful some 

significant limitations of the sprinkler irrigation precipitation pattern simulation model, 

pertaining to computational efficiency and parameter estimation, need to be addressed prior to 

model coupling.   

The following discusses the limitations of the precipitation pattern simulation model, 

developed here, and the indoor and field evaluation procedures applied in the current study and 

outlines recommendations for further studies: 

 

(1) Considering the range of droplet diameter, angular, and field discretization steps used in  

the numerical simulations conducted as part of this study, the average model run time required to 

simulate the precipitation pattern about a sprinkler (in a Dell desktop computer with a RAM of 

6GB and a regular Intel Xeon processor, with speed of 2.8GH) is approximately 20 sec. In which 
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case, a field-scale simulation of the spatial distribution of irrigation over an average size field in 

the Yuma Valley Irrigation Districts (typically consisting of hundreds of sprinklers), considering 

the hourly average wind velocity and pressure head variations over each sprinkler in the field, 

may require hours of computer run time. The implication is that the development of an efficient 

and practically useful sprinkler irrigation design, management, and evaluation model requires 

substantial improvements, in the computational efficiency of the precipitation pattern modeling 

functionality. Further studies that may contribute to the development of a computationally 

efficient field-scale sprinkler irrigation model may include:   

 

(i) The tradeoff between numerical efficiency and accuracy, of sprinkler precipitation pattern  

     simulations, stemming from the use of different combinations of angular, droplet diameter,  

     and irrigated field discretization step sizes needs to be studied in some detail to ascertain  

     ranges of numerical discretization step sizes that could lead to reasonably accurate yet  

     efficient simulations.  

 

(ii)  The use of more efficient computational techniques that can fully exploit the rather powerful  

       hardware (multiple core processors) routinely available in current PCs may need to be  

       explored.  

 

(iii) Experience with measured data and intuitive physical reasoning suggest that sprinkler  

       pressure head variation within a limited range might not lead to significant variations  

       in sprinkler precipitation patterns. On the other hand, in a typical sprinkler system, pressure  

       head variation between sprinklers, that are in close proximity, is negligible. The implication  

       is that for a field wide irrigation simulation, consideration of pressure head variations at  

       every sprinkler in an irrigated field may not lead to appreciable gain in accuracy to offset the  

       computational overhead that it entails. In which case, the pressure head range over an  

       irrigated field can be discretized into a suitably selected number of subintervals that are  

       sufficiently small, such that the range of variation in sprinkler precipitation pattern within a  

       (pressure head) subinterval can be considered negligible. It can then be assumed that each  

       subinterval can be represented in terms of a single parameter set, associated with an average  

       nozzle pressure head for the subinterval, with satisfactory accuracy. Such an approach can  
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       substantially improve the computational efficiency of a field-scale sprinkler irrigation model  

       and can reduce the number of required indoor and field measurements to a practically  

       manageable size. However, this requires the development of a procedure for the optimal  

       discretization of a given field wide sprinkler pressure head range into sufficiently small  

       subintervals that leads to improved computational efficiency without impairing accuracy.  

 

(iv) Potential improvements in computational efficiency that may accrue from the solution of the  

      equations of sprinkler irrigation droplet dynamics with alternative numerical techniques,  

      including implicit Runge-Kutta methods and perhaps some of the multi-step methods, may   

      need to be explored.            

 

(2) Currently measured sprinkler radial application rate data is specified at the (model) input in  

terms of the parameters of a cubic polynomial derived through curve fitting, which introduces 

some error into the computed droplet diameter ranges and droplet volumetric application rates.  

A more accurate estimate of sprinkler radial application rates can be obtained through the 

implementation of a numerical algorithm that directly interpolates radial precipitation rates from 

measured data, given a radial distance from the test sprinkler.     

 

(3) The accuracy of model prediction, to a significant extent, depends on the accuracy with  

which model parameters are estimated. Model parameter related issues that may require further 

studies include:  

 

(i)  Depending on the option used to specify wind velocity data at the input, the number of 

model parameters may vary from a minimum of three to approximately twice as many as  

the number of hours in the irrigation application duration. Considering the number of model 

parameters, which could be appreciable, and in any case not sufficiently small to be 

amenable to simple trial and error based approaches; the development of a parameter 

estimation functionality with an efficient and robust inverse modeling algorithm is essential 

for accurate simulation of precipitation patterns about sprinklers. Hence, the model   

developed here requires further development along these lines.     
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 (ii) Although droplet acceleration effect on drag is known to vary with droplet diameter and its  

       state of motion relative to the ambient air; for reasons of simplicity, in the current model, the  

       empirical drag correction parameter for droplet acceleration effects is considered a constant,  

       given the sprinkler model, nozzle size and pressure head, and wind condition. In which case,  

       this parameter is effectively an empirical sprinkler precipitation pattern shape fitting  

       coefficient. Evaluation of the significance of the limitation that this assumption imposes on  

       the accuracy of model prediction could be useful. A similar analysis with respect to the  

       parameters that take into account wind effects on droplet drag and drift may also be needed.  

 

  (iii) Additional studies aimed at, evaluating the interrelationship between model parameters (in  

         terms of their effect on droplet motion and the precipitation pattern about a sprinkler) and,  

         establishing specific limits on the ranges of variations of model parameters may need to be  

         conducted.           

 

  (iv) Model parameters derived based on the semi-empirical procedure described here are  

      specific to the sprinkler model and nozzle size, sprinkler riser pipe height, nozzle pressure  

      head, and wind velocity, hence limiting the predictive capability of the model. Studies  

      aimed at the development of a database of model parameters for commonly used sprinklers  

      and settings as a function of a set of sprinkler pressure heads (within the range  

      recommended by the sprinkler manufacturer) and a set of average hourly wind speeds  

      (within the range of wind speeds under which sprinkler systems are commonly operated)  

      could be useful in enhancing the applicability of such models in field-scale sprinkler  

      system design and management.               

 

(4) A more extensive evaluation of the model with measured data, covering a wider range of  

conditions, may need to be conducted to fully ascertain its range of applicability and limitations. 

Additional evaluations of the accuracy of the numerical solutions implemented in the current 

model through comparisons with those obtained based on alternative numerical techniques, 

mentioned in a preceding paragraph, could be useful.   
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(5) The equations describing droplet dynamics in the context of sprinkler irrigation under no-

wind condition has a sound physical basis. However, approaches used to take into account wind 

effects on droplet motion, which commonly involve empirical modifications of the equations 

applicable to no-wind condition, may require further examination and development. As part of 

the current study, an effort was made to conduct a relatively rigorous analysis of the problem of 

sprinkler irrigation droplet dynamics, on the basis of which authors have formulated alternative 

equations for taking into account wind effects on droplet drift and drag. These equations are can 

be solved numerically with well established techniques. Hence, a comparative evaluation of 

sprinkler droplet dynamics models based on the new set of equations, proposed here, with those 

based on existing approaches could be useful. The soundness of the physical and mathematical 

reasoning that underlie the derivation of the equations and the amenability of the equations to 

efficient and accurate numerical solution with applicable techniques can be among the factors tin 

terms of which these models can be evaluated.                                  

 

(6) Considering the procedure used in the current study, conditions that need to be met, for the  

determination of sprinkler radial application rate with satisfactory accuracy, consist of: (i) the 

single sprinkler indoor evaluations need to be conducted under an environment that minimizes 

spray evaporation losses without causing condensation and (ii) the spacing between rain gages 

needs to be sufficiently small for the depth collected in a rain gage to be considered a 

representative average of the corresponding annular ring of irrigated area. Standardization of the 

indoor test procedure may help ensure that these conditions are closely approximated during the 

evaluations, thereby improving the accuracy of measured sprinkler radial application rates. 

Hence, further studies aimed at identifying the range of rain gage spacing’s for acceptable 

accuracy as well as the development of a practically useful and inexpensive procedure (materials 

and methods) for environmental control and automation of measurements may need to be 

conducted.   

           

(7) In the study reported here estimates of spray evaporation losses, from the single sprinkler 

field evaluations, were obtained with a volume balance method. This approach has the advantage 

of being simple and fully consistent with measured data. However, it is generally perceived that 

single sprinklers exert a lesser influence on the micro-climate of the test-plot, and the 
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surrounding area, than a system of overlapping sprinklers do over an irrigated field. Hence, the 

transferability of spray evaporation estimates, derived as such, to field-scale simulation 

applications depends on the significance of this difference on micro-climatic effects of the two 

irrigation scenarios. This suggests that further studies are need to evaluate the significance of the 

difference in micro-climatic effects between a single sprinkler and a system of multiple, 

overlapping sprinklers, operating under the same set of field conditions. As part of such a study, 

the potential application of existing semi-empirical approaches for computing spray evaporation 

fractions (as a function of climatic factors) and their comparative advantage/limitations with 

respect to the approach used here, can be explored.             

  

(8) The approach used in the current study for droplet volumetric application rate  

characterization presumes that for a given sprinkler and nozzle pressure head combination the 

underlying droplet size distribution remains unchanged regardless of the state of motion of the 

ambient air. It then follows that sprinkler droplet volumetric application rates derived based on 

indoor measurements, undertaken at a given nozzle pressure head, can be applied to a sprinkler 

of the same model, nozzle size, and riser pipe height, operating under field conditions. The 

implication is that wind effects on sprinkler precipitation pattern can be considered to be 

confined to the distortions it introduces to the trajectory of individual droplets, which is then 

taken into account through empirical parameters. However, there are studies that show that the 

formation of droplets and the resulting droplet size distribution is a function of the state of 

motion of the ambient air as well as the irrigation stream and the subsequently formed droplets. 

This suggests that further studies are needed to evaluate the significance of wind effects on 

sprinkler droplet size distribution and hence the error that the relevant simplifying assumptions 

introduce into sprinkler irrigation precipitation pattern simulation models.  
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