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Chapter 1.  Introduction 

 

In the context of sprinkler irrigation applications, droplet dynamics concerns the unsteady 

motion of water droplets through the ambient air, which could be quiescent (no-wind condition) 

or under steady uniform smooth horizontal motion itself (e.g. Fukui et al., 1980; Vories et al., 

1987; Seginer et al., 1991; Carrion et a, 2001; Playan et al., 2009). Individual droplets are 

considered to be of constant size and shape throughout their motion, hence can be treated as rigid 

spheres in so far as their drag characteristics are concerned. Droplet motion is treated as an 

impulsively started motion at the sprinkler nozzle with known initial condition. The motion is 

curvilinear on the vertical plane, because of gravity. On the other hand, droplet motion on the 

horizontal plane is rectilinear, if the ambient air is quiescent or, it can be curvilinear if there is 

wind.    

 A sprinkler droplet dynamics model simulates the motion through the ambient air of 

individual droplets. The governing equation of droplet dynamics is a mathematical description of 

Newton’s second law of motion (Fukui et al., 1980; von Bernuth and Gilley, 1984; Seginer, et 

al., 1991; Carrion, et al., 2001; Playan et al., 2009). The equation of motion relates the net 

unbalanced force acting on a water droplet, computed as the vector sum of the major forces 

acting on the droplet, with its acceleration (e.g., Shames, 1966; Soutas-Little and Inman, 1999). 

The resulting set of differential equations can then be solved numerically given the initial 

velocity and location of the particle (droplet) as it breaks away from the water jet, to determine 

its destination on the soil surface and its trajectory in a selected coordinate system.  

The forces acting on a droplet include those that the ambient air exerts on the droplet and 

droplet weight. Forces exerted by the ambient air vary significantly in scale, are of different 

nature, and many of them may arise only under specific states of droplet motion relative to the 

ambient air. Hence, in subsequent discussions, first the forces that a quiescent ambient fluid (in 

this case air) exerts on a water droplet undergoing a steady or accelerated rectilinear motion are 

defined and their significance in the context of sprinkler irrigation droplet dynamics modeling is 

discussed. Based on which pertinent equations are derived. This will be followed by a discussion 

on the dynamics of an impulsively started, unsteady, motion of a water droplet through a 

quiescent ambient air. Then the more general case of the dynamics of the motion of a droplet 
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undergoing unsteady three dimensional curvilinear motion under wind is discussed, the major 

forces acting on the droplet are defined and pertinent equations are derived. The discussion in 

this document is concluded with a derivation of the approximate equations used in the 

development of a sprinkler irrigation precipitation pattern simulation model reported in the 

companion document.   

 

Chapter 2. Assumptions 

 

The equations derived subsequently are based on the following set of assumptions: 

 

1. Irrigation stream disintegrates into a range of water droplet diameters at the sprinkler nozzle;  

2. The initial velocity of the droplets is equal to the average cross-sectional stream velocity at 

the nozzle, which is a function of sprinkler nozzle diameter and discharge;             

3. The individual water droplets move through the ambient air independent of each other 

(without collision and the forces that the ambient air exert on droplets remain an affected by 

the motion of adjacent droplets);  

4. Individual water droplets assume spherical shapes at emergence from the nozzle and remain 

spherical throughout their motion; 

5. The diameters of the individual water droplets remain invariant throughout their motion (note 

that this should not imply that spray evaporation is neglected. Instead it is a statement of the 

fact that  evaporation is not computed with a mechanistic model per individual droplets basis)   

6. Under wind conditions, the ambient air in which the water droplets are fully immersed in is  

considered to be in a steady uniform horizontal flow with no velocity gradient in the vertical  

direction.      

 

The rational basis for these assumptions, associated simplifications, and the limitations they 

impose on the predictive capability of the model as regards precipitation distribution, and hence 

irrigation application rate, about a sprinkler are discussed in the companion document (Zerihun 

and Sanchez, 2014). Overall, the implications of these assumptions for sprinkler irrigation 

droplet dynamics are: the initial conditions for droplet motion are established, droplets are 
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treated as rigid spheres with constant diameter and shape throughout their motion. The dynamics 

of the complex process of the simultaneous motion of a system of particles (which involves 

direct interaction between particles and indirect interaction through their effect on the ambient 

air) can be reduced to the dynamics of the motion of individual particles. Wind is considered as a 

steady uniform horizontal air flow.   

 

Chapter 3. Forces that a quiescent ambient air exerts on a water droplet undergoing steady  

                   or accelerated rectilinear motion   

 

In this section the type of forces that a quiescent ambient air exerts on a water droplet 

undergoing a steady or accelerated rectilinear motion are described. Equations relating 

aerodynamic drag (under steady state motion) or the aggregate effects of the major forces acting 

on the droplet (under conditions of accelerated droplet motion) with pertinent variables are 

presented. Note that the simplifying assumptions, as regards droplet size and shape, listed above 

are considered applicable here.  

 

3.1 Steady motion of water droplet 

The simplest type of water droplet motion consists of one in which a droplet moves at a 

constant velocity in a straight line (rectilinear motion) through a quiescent air. In such a case, the 

forces exerted by the ambient air on the droplet consist of drag force, buoyancy, and lift force 

(Vennard, 1941; Granger, 1995). However, buoyant force on the water droplet is considered 

negligible and the lift force is ignored in sprinkler droplet dynamics application, apparently on 

accounts of symmetry of the spherical droplets. The drag force is composed of two types of 

forces: the friction drag, which accounts for the tangential shear stress on the droplet surface, and 

the pressure drag (form drag), representing the normal stresses on the droplet surface. The 

relative magnitudes of the contributions of friction drag and pressure drag to the total drag is 

given as a function of the Reynolds number, Re. At low droplet Reynolds numbers (Re <1.0), the 

fluid glides smoothly over the surface of the droplet covering it fully and hence friction drag 

predominates (Vennard, 1941; Granger, 1995). In the range 1.0<Re≤1000, a recirculation region 

(turbulent wake) began to form and grow behind the droplet. In which case, the contribution of 
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friction drag becomes increasingly less important and the effect of pressure drag tends to be the 

dominant form of drag. In the range 1000<Re the wake behind the droplet stabilizes. Experience 

with simulation results suggests that, water droplet Re in sprinkler applications is typically less 

than 104.  In sprinkler irrigation modeling applications, the term drag force typically refers to the 

combined effect of these two components on a water droplet without any distinction.  

 In light of the assumptions outline above, water droplets in the context of sprinkler 

irrigation droplet dynamics modeling can be treated as solid spheres in so far as their shapes and 

sizes are concerned. In addition, considering the relatively low velocities (about 30.0m/s or less) 

common in sprinkler droplet dynamics, the effect of changes in the ambient air density due to 

compression and its effect on drag can be considered negligible. With this consideration in place, 

the modulus of the drag force, D, that the ambient air exerts on a water droplet undergoing a 

steady motion can be considered to be a function of four physical quantities: the density, , and 

viscosity,  , of the ambient air, droplet diameter, d, and droplet relative velocity with respect to 

the ambient air, Vr. Note that these parameters take into account the fact that drag has both 

pressure and friction components and that it is a function of the geometry and relative motion of 

the droplet with respect to the ambient air. Considering that the ambient air is assumed to be 

stationary, Vr is equal to the absolute velocity of the droplet. The functional relationship between 

the dependent variable, D, and the independent variables (,,d,Vr) can be expressed as:   

)(),,,,( 10=rVdDf   

 

In Eq. 1, there are five physical quantities expressed in terms of the three fundamental 

dimensions of mass [M], length [L], and time [T]: 
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In Eq. 2, [.]  = the dimension of a physical quantity. Using the Buckingham  theorem, Eq. 1. can 

be expressed as a relationship between two dimensionless products (π1,π2): 
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The physical and mathematical principles underlying the Buckingham  theorem are described 

by Langhaar (1980). With the drag force, D, as the dependent variable, Eq. 2 can be given as the 

product of a dimensionless constant, C, some function of the Reynolds number, and an 

expression of the form,  d2Vr
2:  

 

               )())(( 522
rVdReCfD =  

 

In Eq. 5, if the dimensionless constant C = /8, the equation for aerodynamic drag, D, acting on 

a droplet undergoing steady rectilinear motion in otherwise quiescent viscous fluid results:  

       )( 6
2

2
rds VACD


=  

where Cds = the steady state drag coefficient which is a function of the droplet Re [-] and A = the 

projected area of the sphere (L2). Noting that Vr
2/2 is equivalent to the pressure that the ambient 

air exerts on a droplet and that the product of this expression with the projected area of the 

droplet yields pressure force acting on the droplet, it then follows that the expression in Eq. 6 

approximates the overall drag force on the droplet as the product of the steady state drag 

coefficient and the pressure force that the ambient air exerts on the droplet. For rigid sphere 

undergoing steady motion at low Re (≤1.0), the equation relating steady state drag coefficient 

with Re is determined theoretically (e.g., Vennard, 1941; Granger, 1995). However, for 1.0<Re 

the relationship between Cds and Re was determined experimentally (Temkin and Kim, 1980). 

The steady state drag coefficient, Cds, decreases as Re increases in the range Re ≤1000 and 

remains constant at about Cds = 0.45 in the range 1000<Re. Note that the individual droplets in 

sprinkler irrigation droplet dynamics modeling are essentially treated as rigid spheres, hence the 

standard Cds(Re) relationship should be applicable.    

 

3.2 Unsteady motion of water droplet  

For water droplets moving through air steady state motion is an uncommon occurrence. It 

is often described in relation to rain water droplets that have accelerated to terminal velocities, 
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before reaching the ground surface (Laws, 1941) and in situations where the droplets are fully 

carried by steadily moving air with no relative motion between the ambient air and droplet 

(Temkin, and Mehta, 1982). Droplets (often small diameter droplets) from a sprinkler water jet 

decelerating under the action of drag may, in the course of the latter part of their motion, be fully 

carried by wind. However, in sprinkler modeling applications the motion of water droplets (solid 

spheres) through the ambient air is typically unsteady.  

 Theoretical and experimental studies into the effect of unsteady motion of droplets  fully 

immersed in a quiescent fluid shows that at any given moment during their motion, the 

magnitude and nature of forces that the fluid exerts on the droplet differ from the steady state 

drag force (Odar and Hamilton, 1964; Karanfilian and Kotas, 1978; Aggarwal and Peng, 1995). 

Note that while some of these studies are based on experiments involving the motion of solid 

spheres fully immersed in oil, given the assumptions introduced above with regard to the size 

and shape of droplets and the properties of the ambient fluid, their inferences are generally 

considered applicable to droplet motion through air (e.g., Aggarwal and Peng, 1995). Overall, 

the forces exerted by the ambient fluid are considered to be composed of three components: the 

steady state drag force expressed as a function of the instantaneous Reynolds number, Eq. 6; 

force related to the instantaneous acceleration (with a form of droplet mass times acceleration); 

and force expressed in terms of a time integral representing the acceleration history of the droplet 

– which could be attributed to the disturbances that prior droplet motion has introduced to the 

ambient fluid. 

The form of the equation describing these forces and its parameters are well defined at 

low Reynolds number, Re≤1.0, however, at moderate to high Reynolds number the values of the 

model parameters are not well defined (Karanfilian and Kotas, 1978; Aggarwal and Peng, 1995). 

Hence, because of the uncertainty in parameter estimates and also on accounts of the complexity 

of the equation and applicable numerical solutions, a simpler formulation based on Eq. 6 is often 

used to approximate the aggregate effects of steady drag force and the forces arising due to 

acceleration. Such an approach is described as the correlation approach (e.g. Aggarwal and Peng, 

1995). With this approach the steady state drag coefficient, in Eq. 6, is replaced with a parameter 

often termed as the unsteady drag coefficient, Cdu; which has been shown to be a function the 
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instantaneous Re and the acceleration number, an (Karanfilian and Kotas, 1978; Aggarwal and 

Peng, 1995).  

    )(),( 7
2

2
rndu VAaeRCD


=

 
 

where D = the modulus of the drag force [ML/T2]. The acceleration number is, a dimensionless 

physical quantity, used to measure the relative strengths of the droplet convective acceleration to 

its local acceleration and is defined as (Karanfilian and Kotas, 1978; Temkin and Kim, 1980): 
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where ar = the relative acceleration (L/T2). The correlation approach has been shown to provide a 

good fit between the computed and measured data describing the accelerated motion of solid 

spheres fully immersed in oil (Karanfilian and Kotas, 1978). Temkin and Kim (1980) have used 

the correlation approach to fit measured data from an experiment conducted under laboratory 

condition, in which spherical water droplets undergo accelerated motion through air which also 

moves, but with a uniform velocity. Finally, to the extent that the forces exerted by the ambient 

air on a water droplet, undergoing unsteady motion, are approximated with a form of the drag 

equation (through modifications introduced to the steady drag coefficient), they will not be 

explicitly considered in subsequent analysis.     

 

Chapter 4  Dynamics of droplet motion through a quiescent ambient air   

 

In order to facilitate ease of visualization of droplet motion and the kind and nature of forces 

acting on droplet the three dimensional droplet trajectory, associated velocity, and acceleration 

vectors are presented and discussed in terms of their projections on the horizontal and vertical 

planes. However, the derivation of equations is based on vector algebra in a rectangular 

coordinate system.  

 

4.1 Description of droplet motion including trajectory, velocity, and acceleration components  

The discussion in this section concerns the dynamics of an impulsively started unsteady 

droplet motion through a quiescent ambient air, which is a special case of an accelerated motion 
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of water droplet through a viscous fluid. An assumed trajectory of the water droplet, its initial 

conditions, and landing coordinates on the irrigated field surface are shown in Figure 1a, with the 

origin of the coordinate system set at the intersection of the centerlines of the sprinkler riser pipe 

and the lateral (assuming the lateral is horizontal and the riser is vertical). Figures 1b and 1c 

depict the droplet initial absolute velocity vector, V0 , and the absolute velocity vector at some 

time, t, following its release from the sprinkler nozzle, and their components along the 

coordinate axes.  

A closer look at the projections of the water droplet trajectory on a horizontal and vertical 

plane reveals some interesting features of the nature of accelerated droplet motion through an 

otherwise quiescent ambient air condition (Figure 2a). It can be noted from Figures 2a and 2b 

that the projected droplet trajectory on the vertical plane is curvilinear (due to gravity), implying 

that droplet acceleration vector on the vertical plane has both tangential and normal components 

to the trajectory (e.g., Shames, 1966; Soutas-Little and Inman, 1999). The tangential component, 

avt (which does not include the component of gravitational acceleration tangent to the droplet 

trajectory), represents the change in the magnitude of droplet absolute velocity on the vertical 

plane. The normal component, on the other hand, accounts for the change in direction of the 

projection of droplet absolute velocity vector on the vertical plane. Hence, it is responsible for 

the curvilinear motion there. For reason of simplicity of notion, the normal component of 

acceleration on the vertical plane is not shown in Figure 2b. However, it can readily be noted that 

it is a component of the gravitational acceleration normal to droplet trajectory.    

 The projection of droplet trajectory on the horizontal plane is a straight line and the angle 

that it makes with the x- and y- coordinate axes is set by the horizontal angular setting of the 

sprinkler nozzle with respect of a reference axis (the x-axis), θhx0, at the time droplet leaves the 

sprinkler nozzle (Figure 2a). The fact that the projection of the droplet  trajectory on the 

horizontal plane is straight-line implies that droplet acceleration on the horizontal plane, ah, is 

entirely due to changes in the magnitude of the projected droplet absolute velocity vector on the 

horizontal plane (alternatively stated, the normal component of acceleration on the horizontal 

plane is zero). It also indicates that droplet velocity, acceleration, and force vectors lie on the 

same vertical plane. Hence, droplet motion is planar (it is two-dimensional on a vertical plane) 
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Figure 1 (a) Sprinkler irrigation droplet trajectory and droplet absolute velocity vectors; (b) Initial velocity vector,V0,(L/T), its components, and 

               (c) Velocity vector at time t, V(t), following the release of droplet from sprinkler nozzle, and its components  (where Vx0, Vy0, and   

               Vz0  = the components of droplet initial velocity vector along the x, y and z coordinate axes, respectively; x0, y0, and z0 = the components  

               of the droplet position vector along the coordinate axes at time t=0; V(x(t)),V(y(t)), and V(z(t)) = the components of droplet absolute  

               velocity vector along the respective coordinate axes at time t; θx, θy, and θz   = the angle that the instantaneous velocity vector, V(t),  

               makes with the coordinate axes; xf , yf, and zf   = droplet landing coordinates on the field surface)
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and the vertical plane of motion is completely defined by the angular setting of the sprinkler 

nozzle at the time droplet departs the sprinkler nozzle. Note that this has an important 

implication in the numerical solution of the droplet dynamics equations. While the above 

discussion helps visualize the effect of wind on droplet motion, eventually a quantitative 

description of wind effects on droplet motion has to be presented in a three dimensional 

coordinate system (Figure 3d). 

 

4.2 Major forces acting on a droplet  

Droplet acceleration in a given direction is proportional to the net unbalanced force on 

the droplet in that same direction. Hence, the above description of droplet acceleration 

components can be used to define the corresponding forces acting on the droplet. It can readily 

be noted that droplet weight, Fw, which is directly proportional to gravitational acceleration, g, is 

one of the forces that acts on the droplet (Figure 2b). It then follows from the preceding 

discussion that the droplet tangential acceleration, in three dimensions, at (which is a function of 

ah and avt) is evidently related to the attenuation of droplet velocity due to aerodynamic drag, D. 

The relationship between the major forces acting on a droplet, consisting of aerodynamic drag, 

D, and droplet weight, Fw, is depicted in Figure 2d. 

 

4.3 Equations of droplet dynamics under no-wind condition 

From Newton’s second law of motion at any given time in the course of droplet motion, 

the vector sum of forces acting on a droplet can be related to the droplet acceleration vector as 

follows:  

 

         )(Fa 9=m  

 

where m = droplet mass [M], a = droplet acceleration vector [L/T2], F = force vector [ML/T2], 

and the expression F represents the vector sum of the forces acting on the droplet. Note that 

in subsequent discussion, following convention, bold face letters are used to define vectors.  
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Figure 2 (a) Assumed droplet trajectory in a rectangular coordinate system, instantaneous droplet absolute velocities, and projections of  

               droplet trajectory on a horizontal and a vertical plane under conditions of  no-wind; (b) Projections of droplet instantaneous  

               acceleration on a vertical plane; (c) Projection of  droplet instantaneous acceleration on a horizontal plane; and (d) Droplet  

               free-body diagram (where θ = the angle that the initial droplet absolute velocity vector, V0, makes with a horizontal plane;  

               θhx0 =  the horizontal angular setting of the sprinkler nozzle at the time droplet leaves the nozzle (also equal to the angle that the  

               projection of the initial droplet absolute velocity vector on the horizontal plane makes with the x-axis); θhy0   = the angle that the  

               projection of the droplet initial velocity vector on the horizontal plane makes with the y-axis; avt = the projection of droplet tangential  

               acceleration on a vertical plane, excluding the component of gravitational acceleration  [L/T2]; g = gravitational acceleration [L/T2] and  

               ah = projection of droplet tangential acceleration on a horizontal plane [L/T2], D = drag force [ML/T2], and FW = droplet weight  

               [ML/T2])
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Using a rectangular coordinate system, at any given time, t, droplet acceleration vector, a(t), can 

be expressed as 
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where r(t) = the water droplet position vector 

     
       )(k)(j)(i)()(r 11tztytxt ++=         

 

and x(t), y(t), and z(t) are the coordinates of the droplet along the x, y, and z axes at time, t, and  i, 

j, and k are unit vectors, along the three coordinate axes, given as  
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 are the components of a = (ax,ay,az) along the coordinate axes, 

respectively.  

 

The vector sum of the forces acting on the droplet (Figure 2d) can be expressed as 

 

         )(13wFDF +=  

 

In what follows expressions in vector form for the drag, D, and droplet weight, Fw, forces will be 

presented.  

 

Drag force, D: The drag force that the ambient air exerts on the droplet has the same line of 

action as the droplet relative velocity vector, Vr (referenced with respect to the ambient air); but 

acts in opposite direction to it. It then follows from vector algebra (e.g., Ellis and Gulick, 1991)  

that the equation for the drag force vector can be obtained by multiplying Eq. 7 by the negative 

of a unit vector, ev, which has the same line of action but opposite sense as Vr      
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In Eq. 14, rV = the modulus of the instantaneous droplet relative velocity vector, and by 

definition the unit vector along Vr is given as
r

r
v

V

V
e = . The vector form of the drag equation for 

a droplet undergoing unsteady motion (Figure 2a) through an otherwise quiescent air can then be 

 

expressed as       

 

 )(VVD 15
2
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−=  

 

Noting that wind velocity is considered zero, the droplet relative velocity with respect to the 

ambient air, Vr, is the same as the droplet absolute velocity vector, V.  Nonetheless, in 

subsequent derivation the notation Vr is retained in order to emphasize the significance of Vr in 

drag computation. Hence, the vector equation for Vr in rectangular coordinate system can be 

given as    

  

         )(kjiV 16zyxr VVV ++=  

 

where Vx, Vy, and Vz  = the components of droplet absolute velocity along the coordinate axes 

(Figure 1). Substituting Eq. 16 in Eq. 15 yields the vector equation for the drag force acting on a 

droplet undergoing unsteady motion in a quiescent air 

 

           ( ) )(kjiVD 17
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Droplet weight, Fw: Noting that at any given point along the trajectory of the water droplet, the  

droplet weight is directed in the negative z direction (Figure 2d), the vector form of the equation 

for Fw is given as   

  

          )(kF 18mgw −=  

 

Substituting Eqs. 17, 18, and 10 in Eq. 9, yields the  vector differential equation (in a rectangular 

coordinate system) describing accelerated (unsteady) motion of a droplet through an otherwise 

quiescent air  
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subject to the condition  
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The scalar form of the equation of motion, Eq. 19, along the three coordinate axes can then be 

given in terms of six equations with six variables:   
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Noting that the mass of the water droplet, m, and its projected area normal to the direction of 

motion, A, are given as:  
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where π = the ratio of the circumference of a circle to its diameter [-] and w = the density of  

water [ML/T2], in Eqs. 22-27  
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Equations 22-27, represent a coupled system of (six) first-order nonlinear differential equations 

with six unknowns (Vx,Vy,Vz, x, y, z). Problem definition is completed with the statement of  

initial conditions. Considering the intersection of the centerlines of the lateral and sprinkler riser 

pipes as the origin of the coordinate system, the initial conditions can be given as: 

 

     )(

)cos(V)t(V

)cos(V)t(V),cos(V)t(V

z)t(z,.)t(y,.)t(x

zzz

yyyxxx 30

0

00

0000000

000

000000

0















===

======

======





V

VV  

 

In Eq. 30, z0 = sprinkler riser pipe height (L), |V0| = the magnitude of the initial droplet absolute 

velocity vector (L) and can be computed based on measured or computed sprinkler discharge and 

nozzle diameter, and θx0, θy0, and θz0 = the angles that initial droplet absolute velocity vector 

makes with the coordinate axes. Considering a counter clockwise sprinkler rotation referenced 

from the positive x-axis (Figure 3a), the sprinkler nozzle angular setting, θhx0, is known. The 

sprinkler vertical tilt angle, θ, is also a known quantity for a given sprinkler model. Then the 

quantities θx0, θy0, and θz0 can be computed with 
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The vector differential equation, Eq. 19, or its scalar counterparts, Eqs. 22-27, constitute the 

basic equations describing droplet dynamics in the context of sprinkler irrigation applications, 

for the conditions in which wind velocity can be considered zero (Fukui et al., 1980; Vories et 

al., 1987; Seginer et al., 1991; Carrion et al., 2001; Playan et al., 2009). The coupled system of 

equation, Eqs. 22-27, along with pertinent initial conditions, Eq. 30, represent an initial value 

problem that can be solved numerically using established methods (Burden et al., 1981; Press et 

al., 1997; Matthews et al., 2004).  

 

Chapter 5 Dynamics of droplet motion under wind   

 

5.1 Description and assumptions pertaining to wind  

Operating sprinkler irrigation systems under quiescent atmospheric conditions are 

considered ideal from the stand point of attaining high irrigation uniformity under overlapped 

field conditions. In practice, however, sprinkler irrigation is often conducted under windy 

conditions. In sprinkler droplet dynamics applications wind is considered as a smooth 

(streamlined), steady uniform horizontal air flow, with no vertical component. The section of the 

atmosphere in which the motion of sprinkler droplets takes place is the surface layer where 

boundary layer effects are significant, and hence vertical gradients in the horizontal wind 

velocity vector can be significant (Arya, 1988). Although a logarithmic wind profile equation 

can be used to estimate vertical variations in wind velocity, explicit consideration of these 

variations in the droplet dynamics model at least conceptually implies the presence of sheared 

flow and contradicts the streamlined tranquil horizontal air flow assumed above. In addition, if 

horizontal wind velocities are considered variable with height above the field surface, during 

numerical computations at each time step wind velocity (instead of being a constant input) needs 

to be computed as a function of the vertical coordinate of the droplet, which is determined as part 

of the numerical solution for the time step. This complicates the numerical solution by requiring 

an iterative procedure during each time step. Hence, the approach adopted here assumes that 

wind is a steady uniform horizontal air flow with no velocity gradient in the vertical direction. 

Hence, in effect the wind velocity vector considered here is an effective average wind velocity 

over the duration of irrigation in the surface layer where water droplet motion takes place.     
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Early approaches to modeling wind effects on sprinkler droplet dynamics and precipitation 

pattern distribution (Fukui et al., 1980; von Bernuth and Gilley, 1984; Vories et al., 1987) were 

based on the assumption that equations of the form given in Eqs. 22-27 can be used to take into 

account the effect of wind on drag and droplet drift, with Vr computed as the droplet relative 

velocity with respect to the velocity of the ambient air (wind velocity). However, such an 

approach was found to be inadequate to represent the distortions that wind introduces in the 

participation pattern about a sprinkler. Commonly used modifications in order to take into 

account wind effects, on droplet motion and sprinkler precipitation pattern, more effectively 

involves empirical approximations of the unsteady drag coefficient as a function of the steady 

drag coefficient and trigonometric terms implicitly accounting for drag and droplet drift effects 

(Seginer et al., 1991; Carrion et al., 2001; Playan et al., 2009). However, in the following 

discussion a system of equations will be derived based on a more rigorous physical reasoning, 

taking into account the type of motion and the nature of the corresponding forces that wind 

introduces into the dynamics of droplet motion (compared to droplet motion under an equivalent 

quiescent ambient air condition). As will be shown subsequently, an important feature of the 

approach presented here, as distinct from earlier approaches, is the way the effect of wind on 

droplet motion is taken into account. In stead of simply encapsulating wind effects into the 

droplet relative velocity vector, Vr, in the current approach wind velocity vector is resolved into 

components along and normal to the droplet absolute velocity vector. Then the tangential and 

normal components of the wind velocity vector, which are vectors themselves in a fixed 

rectangular coordinate system, are shown to be representing wind effects on drag and droplet 

drift, respectively. Based on which a mathematical expression for droplet drift would be defined 

and incorporated into the equation of motion.                

Wind drift effect in the context of sprinkler irrigation is often described as wind induced 

distortions on sprinkler irrigation precipitation pattern relative to that associated with an 

equivalent no-wind condition. However, the concept of droplet wind drift can be more subtle. 

Although in principle, any wind induced deviation in droplet trajectory (which could have both 

horizontal and vertical components) from an equivalent no-wind condition can be considered 

droplet wind drift, in subsequent development only those that can be attributed to the radial 

forces introduced by wind are considered as wind drift.   
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5.2 Description of droplet trajectory, acceleration vector, and its components   

In order to conceptualize the effect of wind on droplet motion, initially consider a 

scenario in which a droplet undergoes an impulsively started accelerated motion in a quiescent 

ambient air condition under a given set of conditions:  air viscosity, density, droplet diameter, 

sprinkler design factors, nozzle coordinates, and pressure head at sprinkler nozzle. Then at some 

time t following the release of the droplet from the sprinkler nozzle, assume a steady uniform 

wind vector, W (not parallel to the absolute velocity vector of the droplet), is spontaneously 

imposed on it (Figure 3a). Consistent with the preceding description of droplet motion through a 

quiescent air (Section 4), in the first part of droplet motion the projected droplet trajectory on the 

horizontal plane would be a straight line. However, with the introduction of wind, intuitive 

physical reasoning, and observations of actual field irrigation events, suggest that the projection 

of droplet trajectory on the horizontal plane would begin to veer out of the rectilinear path that it 

followed during the initial phase of its motion. Droplet trajectory on the horizontal plane will 

continue to change direction with time until either the wind velocity vector and the droplet 

absolute velocity vector lie on the same vertical plane (i.e., the wind velocity vector and the 

projection of the droplet absolute velocity vector on the horizontal plane, Vh, become collinear) 

or the droplet reaches it destination on the surface of the irrigated field (Figure 3a).  

The preceding implies that, under wind, the projection of droplet trajectory on the 

horizontal plane also represents curvilinear motion. In which case, droplet acceleration in the 

horizontal plane has both tangential, aht, and normal, ahn, components (Figure 3b). Evidently, the 

tangential acceleration component is related to the attenuation of the droplet absolute velocity 

vector projected on the horizontal plane as affected by aerodynamic drag (taking into account 

wind effects). On the other hand, the normal component of acceleration is responsible for the 

change in direction of the droplet absolute velocity vector and hence for the curvilinear motion 

of droplet on the horizontal plane. The fact that the normal acceleration component and the 

associated curvilinear motion arise with the introduction of wind suggests that the component of 

wind velocity normal to droplet trajectory, on the horizontal plane, is in some form related to the 

normal acceleration. Clearly the preceding discussion, based on analyses of droplet motion and 

related acceleration components (aht and ahn), shows that the effect of wind on droplet motion (as 
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     Figure 3 (a) Assumed droplet trajectory in a rectangular coordinate system, instantaneous droplet absolute velocities, and projections of  

      droplet trajectory on a vertical and a horizontal plane under conditions of a steady uniform horizontal wind, (b) The projection of  

      droplet instantaneous acceleration on a horizontal plane, (c) Projection of droplet instantaneous acceleration on a vertical plane, and  

      (d) Droplet free-body diagram (where aht and ahn = projections on a horizontal pane of the tangential and normal components of  

      droplet acceleration, respectively (L/T2); avt and avn = projections on a vertical plane of the tangential and normal components of  

      droplet acceleration, respectively, excluding components of  gravitational acceleration  (L/T2); and FWD =  wind drift force [ML/T2])   
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projected on the horizontal plane) is partly reflected in the attenuation of droplet absolute 

velocity (aht) and partly on droplet drift, which is a function of ahn. 

As is the case with the condition in which wind velocity is considered zero, here as well 

the projected trajectory of the droplet on the vertical plane represents curvilinear motion (Figure 

3c). Hence droplet acceleration on the vertical plane has both tangential and normal components. 

The tangential component, avt, represents the change in the magnitude of droplet absolute 

velocity on the vertical plane (taking into account wind effects). The normal component, avn, on 

the other hand, accounts for the change in direction of the projection of droplet absolute velocity 

vector on the vertical plane, hence it is responsible for the curvilinear motion there. Note that avn 

does not include the component of gravitational acceleration normal to droplet trajectory. It can 

then be noted that, in contrast to the condition in which there is no wind, herein the normal 

component of acceleration on the vertical plane is the vector sum of a component due to wind 

drift effects, avn, and a component of the gravitational acceleration. This implies that wind effect 

on droplet drift has a vertical component as well.  

 

5.3 Major forces acting on a droplet and equations  

Noting that droplet acceleration in a given direction is proportional to the net unbalanced 

force on the droplet in that same direction, droplet acceleration components shown in Figures 3b 

and 3c will be used to define the major forces acting on the droplet. It can readily be noted that 

droplet weight, Fw, which is directly proportional to gravitational acceleration, g, is one of the 

forces that acts on the droplet. It can also be noted that the droplet tangential acceleration, at 

(which is a function of aht and avt), is evidently related to the attenuation of droplet velocity due 

to aerodynamic drag as affected by wind, D. Considering the preceding discussion on droplet 

acceleration components it is readily evident that the droplet normal acceleration, in three 

dimensions, an (which is a function of ahn and avn), is directly proportional to the force that wind 

exerts on the droplet in a direction normal to its absolute velocity vector, henceforth referred to 

as droplet wind drift force, FWD. The relationship between the major forces acting on the droplet 

is shown in the droplet free-body diagram (Figure 3d). For a droplet undergoing accelerated 

motion under wind, the net unbalanced force acting on it can then be expressed as the vector sum 

of drag, droplet weight, and wind drift forces: 
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The equation for approximating aerodynamic drag on a droplet undergoing unsteady motion, D, 

has the same form as that given in Eq. 17, with the recognition that the computation of the 

relative velocity vector needs to take wind effects into account. The droplet weight, Fw, can be 

readily computed with Eq. 18. On the other hand, the equation for FWD is not obvious. A 

question arises as to how the wind drift force, FWD, can be expressed in terms of droplet mass 

and the kinematic variables of displacement, time, and velocity.  

 

5.4 Conceptualization of the physical mechanism of wind drift and equations  

In order to facilitate subsequent discussion as related to the conceptualization of the 

physical mechanism of wind drift and the nature of the wind drift force and the derivation of a 

mathematical expression for FWD, a velocity diagram at some instant during droplet motion 

depicting droplet absolute velocity vector, its projection on a horizontal plane, Vh(t), and the 

wind velocity vector is presented in Figure 4a. In addition, droplet trajectory in three dimensions 

with wind velocity vector resolved into its components along the droplet absolute velocity 

vector, Wc, and normal to the droplet absolute velocity vector, Wn, is shown in Figure 4b.  

It can be noted form the discussion in Sections 5.2 and 5.3 that Wn and Wc are collinear with the 

droplet normal acceleration, an, and tangential acceleration, at, vectors, respectively. It then 

follows that Wn is related to the wind induced curvilinear droplet motion and hence to the wind 

drift force and Wc represents wind effects on drag.  

Now consider a scenario in which the wind velocity vector, W, and the droplet absolute 

velocity vector, V, lie on the same vertical plane (h = 0), it can then be noted that Wc and Wn 

(Figure 4b) as well lie on the same vertical plane. In which case, droplet motion would be 

restricted to the vertical plane containing these vectors and there would be no wind induced 

droplet motion on the horizontal plane (ahn = 0). Wind effects on droplet motion should then be 

confined to aerodynamic drag and droplet drift on the same vertical plane. Note that such a 

scenario occurs when the centerline of the sprinkler nozzle and the wind velocity vector are on 

the same vertical plane at the time droplet is released. It could also occur, at some point during 

droplet motion, if the angle h at the time of droplet release from sprinkler nozzle is sufficiently  
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Figure 4 (a) Velocity diagram showing the instantaneous droplet absolute velocity, V(t), the projection of  

               the droplet absolute velocity vector on the horizontal plane, Vh, and the wind velocity vector ,  

               W, and their components along the coordinate axes; (b) Droplet absolute velocity vector and  

               the components of the wind velocity vector along and in a direction normal to V: Wc and Wn,  

               respectively; (c) Projections of V, Wc, and Wn on a horizontal plane: Vh, Whc, and Whn,  

               respectively; and (d) Projections of V, Wc, and Wn on a vertical plane: Vv, Wvc, and Wvn,  

               respectively (Note that the projection of wind velocity vector on the vertical plane is either Wx or  

               Wy, depending on the vertical plane considered; α = the angle between droplet absolute velocity  

               vector and wind velocity vector; and αh = the angle between Vh and wind velocity vector, αv =  

               the angle Vv makes with the horizontal) 

 

 

small, for the prevailing wind velocity vector to cause the droplet to veer into a course that its 

corresponding Vh eventually becomes collinear with the wind velocity vector. A more typical 

scenario, under field irrigation settings, is one in which the angle between the wind velocity 

vector and the horizontal projection of the droplet absolute velocity vector is different from zero 

(h  0). In which case, the droplet absolute velocity and the wind velocity vectors do not lie on 

the same vertical plane (or V, Vh, and W are not coplanar). The implication is that the component 

of the wind velocity vector normal to the droplet absolute velocity vector, Wn, does not lie on the 
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same vertical plane as V and Vh. In which case its projection on the horizontal plane, Whn, is 

normal to the vertical plane containing V and Vh. Figure 4c depicts Vh, W, and the projections on 

the horizontal plane of Wc and Wn, Whc and Whn, respectively. It can be noted that Whn is 

collinear with ahn, hence related to the curvilinear motion of droplet on the horizontal plane and 

the projection on the horizontal plane of the wind drift force. In which case Whc, which is 

collinear with aht, represents wind effects on aerodynamic drag on the horizontal plane. 

Similarly, Figure 4d shows the projection on a vertical plane of the droplet absolute velocity 

vector, Vv(t), the projections on the vertical plane of Wc and Wn, Wvc and Wvn, respectively. Here 

as well the normal component of the wind velocity vector, Wvn, contributes to the curvilinear 

motion of droplet on the vertical plane and is collinear with avn, hence related to the projection of 

the wind drift force on the vertical plane. It then follows that Wvc represents the effect of wind on 

aerodynamic drag on the vertical plane. The preceding discussion shows that droplet wind drift 

induces a shift in droplet trajectory, compared to an equivalent no-wind condition, both on the 

horizontal and vertical planes.      

While the above discussion helps visualize the effect of wind on droplet motion, 

eventually a quantitative description of wind effects on droplet motion has to be made in a three 

dimensional coordinate system (Figure 4b). In subsequent section, some specific observations 

will be made, on the properties of the wind velocity components of Wc and Wn, leading to the 

conceptualization of the mechanism of droplet wind drift force, FWD, and the derivation of an 

approximate equation for FWD: 

 

(i) Considering that the angle between the droplet absolute velocity vector and wind velocity 

vector, α , vary with droplet spatial coordinates and hence time (Figure 4a), it then follows that 

the relative magnitudes of the components of W along and in a direction normal to V (i.e.,  Wc 

and Wn) should vary as a function of droplet spatial coordinate as well. 

 

(ii) Noting that Wn is normal to V and collinear with the normal droplet acceleration, an, and 

hence with the wind drift force, FWD; it can be noted that Wn is the component of the wind 

velocity vector that is related to the droplet wind drift force: nWDF W . 
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(iii) It then follows that the Wc vector (which is collinear with droplet absolute velocity vector V 

and the tangential acceleration, at) is the component of the wind velocity vector that represents 

the effect of wind on aerodynamic drag. Hence only a component of the relative velocity vector, 

hereafter referred to as Vr  (and is given as Vr  = V-Wc) would be used to compute aerodynamic 

drag.   

 

(iv) If a mathematical expression can be derived for Wc, then the equation for computing Vr  

follows, based on which the drag force can be computed. As will be shown subsequently, an 

equation can be derived for Wc as a function of W and V(t) vectors based on vector algebra. Note 

that an expression for Wn can then be obtained in terms of W and Wc. 

 

The preceding observations would be used to conceptualize the nature and mechanism of wind 

drift force, FWD, and to derive a mathematical expression for it. In addition, equations for Wc, 

Wn, and Vr  will be derived and the drag force equation will be defined in light of the expression 

obtained for Vr . 

 

Equation for FWD: Having shown that there exists a relationship between FWD and Wn, the form 

of the equation that relates FWD with Wn would follow if only the nature of FWD can be defined. 

Intuitive physical reasoning suggests that the wind drift force, FWD, can be conceived as a 

pressure force that the flowing ambient air mass exerts on the droplet in a direction normal to 

droplet trajectory. In which case, a function with the same form as Eq. 15 can be used to 

compute the force acting on the droplet. Noting that V and Wn are orthogonal, it follows that the 

droplet relative velocity with respect to the ambient air in a direction normal to V is equal to  

-Wn. The modulus of the wind drift force can then be expressed, with an equation of the form 

similar to Eq. 15, as follows   
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The vector form of which is given as 
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where CDW = empirical coefficient for the wind drift force equation, could be expressed as some 

function of the unsteady drag coefficient, Cdu. The preceding discussion shows that if the 

equations for Wc and Wn are given, aerodynamic drag and wind drift forces acting on a droplet 

can be computed with equations 15 and 34, respectively. In what follows vector algebra will be 

used to derive expressions for Wc and Wn in terms of the wind velocity and the droplet absolute 

velocity vectors. 

 

Equation for Wc: Noting that Wc is the projection of W on V (Figure 4d) and using the formula 

for the scalar product of vectors, the modulus of Wc can be expressed as 
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where . = the modulus of a vector and VW •  = the dot (scalar) product of W and V. Noting that 

the vector equations for W and V in a rectangular coordinate system can be given as 
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The equations for Wc can be given as    
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In Eq. 37  is given as  
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The component of the droplet relative velocity vector, Vr′, that would be used to compute the 

drag force, D (Eq. 15), is given as:  
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where Vrx, Vry, and Vrz are given as 
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Equation for Wn: The wind velocity vector, W, is the vector sum of Wn and Wc (Figure 4d), 

hence the modulus of Wn can readily be obtained in terms of the wind velocity vector, W, and Wc  
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The equation for Wn can then be expressed as 
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The vector form of Wn can be given as  
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Note that Eq. 34 can be used to evaluate the wind drift force acting on the droplet, FWD, with Wn 

defined in accordance with Eq. 43.  

 

5.5 Equation of droplet dynamics under wind   

It follows from the preceding discussion that the vector sum of forces acting on a droplet 

undergoing an impulsively started accelerated motion under wind can be expressed as   
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with Vr and Wn defined in terms of Eqs. 39 and 43. In Eq. 44, CD = a coefficient that can be 

expressed as some empirical function of the unsteady drag coefficient, Cdu. A possible form of 

the unsteady drag coefficient will be defined in a subsequent section (Section 6). The equation of 

motion expressed in vector differential form can then be given as      
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Equation 45 can be recast as an equivalent set of scalar differential equations along each of the 

coordinate axes, resulting in six equations with six unknowns 
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Problem definition is complete with the statement of initial conditions (Eq. 30). The system of 

nonlinear differential equations (Eqs. 46-51) coupled with the initial conditions can be solved 

numerically. Equations 46-51 describe a more general form of an impulsively started accelerated 

motion of water droplet that occurs under a steady uniform horizontal wind. It can be shown that 

the form of the equations derived for no wind condition, Eqs. 22-27, represent a special case of 

Eqs. 46-51 obtained by setting the wind velocity vector to zero.  

Note that Eqs. 46-51 were not used in developing the numerical droplet dynamics model 

that forms the basis of the sprinkler irrigation precipitation pattern simulation model presented in 

subsequent sections and in the companion document. The reason was that the above set of 

equations were derived after the numerical model, described subsequently, is developed based on 

approximate forms of the governing equations of droplet dynamics. However, it is included here 

as part of the background theoretical review and development conducted within the framework 

of the study reported here. In what follows the approximate formulation of the droplet dynamics  

equations, which was solved numerically and forms the physical basis of the sprinkler 

precipitation pattern simulation model developed in this study is presented.     
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Chapter 6 Numerical droplet dynamics model developed as part of the current study 

 

6.1 Review and derivation of equations 

Derivation of the equations that form the basis of the droplet dynamics model developed 

as part of the current study combines established ideas proposed in earlier studies and also new 

concepts formulated as part of the current study in the preceding sections (Section 5). Sprinkler 

irrigation is typically undertaken under wind condition and droplet dynamics under no-wind 

condition is a special case of that occurring under wind. Hence, the general case of droplet 

motion under wind is considered here, which is unsteady and curvilinear. A discussion on the 

forces that the ambient air exerts on a droplet undergoing unsteady motion and the modification 

that need to be made to the steady state drag coefficient in order to take into account the 

aggregate effects of the various forces in the drag equation is described in Section 3. In addition, 

the discussion in Section 5 have also shown that the major forces acting on a droplet undergoing 

unsteady motion under wind consists of drag, droplet weight, and wind drift force. However, as 

an initial approximation, here wind effects on drag and droplet drift are assumed to be 

encapsulated in the drag equation. Note that this is consistent with the approach commonly used 

in sprinkler irrigation droplet dynamics modeling (Fukui et al., 1980; Vories et al., 1987; Seginer 

et al., 1991; Carrion et al., 2001, Playan et al., 2009). In which case, the aerodynamic drag force, 

D, can be expressed with an equation of the form given in Eq. 15. As can be noted form Figure 5, 

with this formulation the variable Vr is equal to the relative velocity vector, given as 

          )(kj)(i)(WVV 52zyyxxr VWVWV +−+−=−=  

 

Substituting Eq. 52 in Eq. 15 yields the drag equation              

 

          ( ) )(kj)(i)(VD 53
2

zyyxxrdu VWVWVAC +−+−−=


 

 

With the drag force expressed in terms of Eq. 53, the resulting system of equations for describing 

droplet motion has the same form as that of Eqs. 22-27, with the exception that Vr  here is 

different from droplet absolute velocity. Evidently the simplicity of this system of equations and 

its amenability to numerical solution with widely used techniques (Burden et al., 1981; Press et 

al., 1997; Matthews et al., 2004) are advantages. However, the numerical solutions of these  
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  Figure 5 Velocity diagram depicting droplet absolute velocity, wind velocity vector, and  

    the relative velocity vector (where α = angle between wind velocity and droplet  

    absolute velocity vector and  = angle between droplet absolute and relative  

    velocity vectors) 

 

equations do not reproduce wind effects adequately, hence, approaches that modify Eq. 53 to 

better approximate wind effects have been proposed (e.g., Seginer et al., 1991; Carrion et al. 

2001; Playan et al., 2009). These formulations generally aim at deriving approximate expressions 

for the effect of wind on both drag and droplet drift using a form of Eq. 53 itself, with the 

unsteady drag coefficient expressed as a function of the steady state drag coefficient and 

trigonometric terms implicitly accounting for drag and droplet drift effects. 

             In subsequent derivation of the equations used in the development of the model 

presented here, the approach described above will be used with some modifications. The 

assumption here is that Eq. 53 has the  mathematical structure to encapsulate wind effects on 

both drag and droplet drift, hence when coupled with the expression for droplet weight it can 

produce the kind of motion resulting from the action of such forces on a droplet in some scaled 

fashion. Note that the similarity in form of the terms representing aerodynamic drag and wind 

drift forces on droplets (Eqs. 15 and 34), lends some support to this observation. Accordingly in 

the model described here, the modification to Eq. 53 consists of resolving the drag force 

computed with Eq. 53 into a component collinear with the droplet absolute velocity vector, D, 

which represents the effect of wind on drag and into a component normal to the droplet absolute 

velocity vector, FWD, which approximates the effect of wind on droplet drift. From vector 

algebra it can be shown that  
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which can be expressed as  

              ( ) )(
V
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r
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 −=•=  

In terms of the components of droplet absolute velocity and wind velocity vectors, along the 

coordinate axes, we have: 

             ( ) )(kji'D 562 zyx VVV ++=  

where 

               ( ) )()()( 572
12 zyyyxxx VWVVWVV +−+−=   

Noting that D computed as such is not the exact expression for drag, Eq. 56 is multiplied by a 

scale factor, ζ1:  

 

               ( ) )(kji'D 5821 zyx VVV ++=   

Now an expression will be derived for the component of the drag force, D, normal to the droplet 

absolute velocity vector, which is used as a surrogate for the wind drift force, FWD.  Noting that 

the drag force, D (Eq. 53), is the vector sum of D (Eq. 56) and FWD, we have     

              ( ) )(VVVDDDF
''

591 •−=−= rWD   

This can be expressed in terms of the components of the droplet absolute velocity vector and the 

wind velocity vector along the coordinate axes as follows: 

               ( ) ( ) )(kj)(i)('F 60322 zyyyxxxWD VVWVVWV  +−−+−−=  

 where  

            )(V 61
2

23 


 −=−= andAC rdu  
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Noting that FWD computed as such is not the exact expression for wind drift force, Eq. 60 is 

multiplied by a scale factor, ζ2:  

     ( ) ( )  )(kj)(i)('F 623222 zyyyxxxWD VVWVVWV  +−−+−−=  

As described in a preceding discussion (Section 3.2), the effect of acceleration on droplet motion 

is taken into account by replacing the steady state drag coefficient with the unsteady drag 

coefficient. Temkin and Kim (1980) and Temkin and Mehta (1982) proposed an empirical 

expression for the unsteady drag coefficient given as the sum of the steady state drag coefficient 

and a term representing some function of the droplet acceleration number. The equation was 

developed based on laboratory experiments covering limited set of conditions in terms of droplet 

Re,  droplet diameter ranges, and air flow velocity compared to those encountered in field 

sprinkler applications. Hence, the applicability of their equation to droplet motion in field 

sprinkler irrigation modeling context is yet to be determined. In the model developed here the 

effect of acceleration is taken into account by introducing an empirical drag correction parameter 

for acceleration effects, ζ3, in a form given in Eq. 63          

    )((Re)CC dsdu 633+=  

Substituting Eqs. 18, 58, and 62, in Eq. 32 yields the expression for the vector sum of forces 

acting on the droplet  
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From Eq. 9, the vector differential equation describing droplet motion can then be given as 
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The corresponding scalar differential equations are  

)(V)WV(
dt

dV
xxx

x 6621  +−=  

)( 67xV
dt

dx
=  

)()( 6821 yyy

y
VWV

dt

dV
 +−=    

 

)( 69yV
dt

dy
=  

 

)( 703 gV
dt
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 )( 71zV
dt

dz
=  

 

where  

 

 )( 72421  =  

 )()( 7321422  −=  

)()( 74
432213  +=  

where ψ4 = the reciprocal of droplet mass (1/M). Equations 66-71 represent a coupled system of 

(six) ordinary differential equations with six variables, which constitute an initial value problem 

that can be solved numerically given the initial conditions (Eq. 31). The numerical solution of 

this system of equations is described by Zerihun and Sanchez (2014).   

 The model parameters defined above, Eqs.58, 62, and 63, are scale factors for wind 

effects on drag, ζ1, and droplet drift, ζ2, and the drag coefficient correction factor for acceleration 

effects, ζ3. These parameters can in theory be estimated through inverse modeling, if all the 

model inputs including initial conditions and wind velocity vector are known and the complete 

trajectory of a droplet is given. Although some physical meaning (scale factors and drag 

correction parameters for acceleration effects) can be attributed to these parameters when used in 
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droplet dynamics modeling context, when applied to sprinkler irrigation precipitation pattern 

simulation they are simple shape fitting parameters. The range of variation of these parameters is 

not yet determined. However, under some special conditions the above equations reduce to 

simpler forms. Parameter values pertinent to this conditions and tentative ranges obtained based 

on numerical simulations are described in the main report of this study.  
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