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1. Introduction

Lettuce is an economically important crop that is prized for its culinary versatility and known
health benefits. But as with all crops, lettuce is threatened by abiotic stressors such as lack of
water as well as biotic stresses such as Fusarium wilt (Fusarium oxysporum). Both of these
plant stressors are likely to increase in frequency as demand for freshwater continues to
heighten while the occurrence of Fusarium in production fields becomes more common. To
address these challenges, new technologies must be developed that can detect and quantify
the presence of stress in lettuce fields so that appropriate management decisions can be made.

Remote thermal imaging, also known as thermography, provides a rapid way to identify plant
stresses associated with a reduction in plant-water content. As plant-water content decreases,
the effect of evaporative cooling via transpiration is reduced leading to a distinct increase in
plant temperature relative to plants with optimal hydration. The reduction in plant-water content
can occur via two mechanisms encountered in production fields; reduced supplies of soil water
that plants can access (drought), or reduced movement of water through the plant caused by
blocked or damaged xylem, which is the exact pathogenesis of Fusarium wilt.

Many studies have demonstrated that small unoccupied aircraft systems (sUAS) can serve as
highly efficient tools for collecting data on crop fields. However, it is necessary that a study be
conducted to test and optimize thermography for its ability to phenotype abiotic and biotic stress
in lettuce at field scale. To that end, a sUAS outfitted with a thermographic camera can be used
to rapidly phenotype entire fields and identify drought-stressed or heavily diseased areas.
Phenotypic data processed and extracted in this manner can also be used for downstream
analyses, such as the identification of genes controlling the plant’s response to these stressors
that will aid improvement of lettuce in the future.

Finally, it is crucial that tools are developed that can benefit both researchers and producers as
finding solutions to these problems is a community challenge. There are many potential
research directions that can stem from the proposed study, and it will serve as an excellent
starting point from which to investigate other phenotypes in lettuce or other leafy crops. For this
work, we evaluated the application of thermography to cotton and lettuce production as these
are two critical crops for Arizona agriculture. The work with cotton was to assess the ability of
thermal imagery to capture changes in plant available water due to varied irrigation methods,
representing different levels of water deficit, in a controlled experiment. The preliminary work
performed in lettuce was to assess if Fusarium-infected lettuce heads could be visually detected
in thermal imagery in a production environment.

2. Methods

2.1 Imaging System

Thermal image data was collected with an sUAS (Matrice 600 Pro, DJI, Shenzhen, China)
equipped with a thermal infrared imaging system. The system consisted of a camera (Tau 2,
Teledyne FLIR, Wilsonville, OR), camera housing (ThermalCapture 2.0 640, TeAx Technology



GmbhH, Germany), and custom gimbal (TeAx 2-Axis Brushless Gimbal, TeAx Technology
GmbhH, Germany). The thermal imaging system had a pixel resolution of 640 ✕ 512 and a
thermal resolution of ±2.0°C. Images were captured on a continuous basis generating a video
file (TMC file type), however, an onboard bin file written to the SD card extracts individual image
frames at a rate of 1 Hz. The extracted images constitute a compressed video file which is used
for downstream processing. Prior to the start of the flight, the camera was allowed to acclimate
for 20 minutes to ambient environmental conditions. Days with low wind and cloud cover, as well
as days furthest from the previous irrigation event, were targeted for each flight.

2.2 Fields and flights

2.2.1 Maricopa field trials assessing water stress assessment using thermography

The Maricopa field experiment conducted for this work, including design, crop and irrigation
management, and soil properties mapping has been described extensively in (Thorp et al.
2022), but will be briefly summarized. The experiment was conducted at The University of
Arizona’s Maricopa Agricultural Center located in Maricopa, AZ, USA (33.079° N, 111.977° W,
elevation of 360 m) during the 2020 cotton growing season. Four irrigation management
treatments, described below, were evaluated using a randomized block design consisting of six
replicated blocks and totaling 24 plots (experimental units). Each plot measured 24.4 m wide,
translating to 24 planted cotton rows with an inter-row spacing of 101.6 cm, by 36 m in length.
For further geospatial analyses and irrigation treatment applications, each plot was divided into
24 subplots with dimensions of 6✕ 6 m. This field design required 2.8 ha of land. The field was
planted on April 18, 2020 [day of year (DOY) 109] with upland cotton (Gossypium hirsutum L.,
cv. ‘NexGen 5007 B2XF’, Americot, Inc., Lubbock, TX) using a vacuum planter (Monosem,
Largeasse, France). Standard cultivation and management practices for cotton production in the
Southwest were followed.

The irrigation treatments were as follows: Model (MDL) – determined irrigation amount solely by
using the FAO-56 dual crop coefficient irrigation model. Drone (DRN) – determined irrigation
amount by using FAO-56 model but added spatial crop cover data derived from a sUAS to
achieve more accurate water availability estimates. Soil (SOL) – used spatial data for soil water
holding limits in conjunction with the model to calculate the irrigation estimate. Variable Rate
Index (VRI) – used VRI technology for site-specific irrigation in conjunction with the irrigation
model to calculate the estimate.

A total of 13 flights were collected from 30 June 2020 (DOY 182) to 23 September 2020 (DOY
267). Flight planning software (Pix4DCapture, Pix4D SA, Lausanne, Switzerland) was used to
establish a grid flight pattern with image overlap, both forward and lateral, set at 90%. Flights
were conducted at solar noon and at an altitude of 50 m resulting in a ground sampling
resolution of 6.54 cm/pixel; total mission time was approximately 24 minutes to cover the field
site with dimensions 184✕ 188 m.

Ground control points (GCPs) were constructed and positioned around the field, for both the
Maricopa and Yuma flights, which allowed the collected images to be georectified upon
stitching, to form a georeferenced orthomosaic. The GCPs were constructed using 0.1016 cm
thick 5052 Aluminum alloy sheet, 2.54 × 60.96 × 60.96 cm piece extruded Polystyrene (XPS)
foamboard, and 0.25 × 60.96 × 60.96 cm sheet of medium-density fiberboard. These materials
were chosen to maximize the temperature contrast to allow for clear identification in the
collected images. There were seven GCPs placed on the north side of the field and seven
GCPs placed on the south side of the field.
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To provide ground-truthed temperature references, several objects were placed within the area
imaged by sUAS. These included coolers containing ice, eight cinder blocks arranged in a 4✕
2 block pad measuring dimensions of 81.3 ✕ 81.3 ✕ 20.3 cm, a 78.0 ✕ 82.0 cm aluminum
rectangle with center cutout placed on the dirt road adjacent the field, and selected cotton plants
next to the ground truth objects. During the sUAS flight, temperature of the items were
measured using handheld infrared thermometers (Mastercool, 52224-A-SP, Randolph, NJ), and
were taken four times during the flight. The temperature of the XPS foam board portion of the
GCP closest to the other ground truth objects was also recorded.

2.2.2 Yuma field trials investigating ability to detect Fusarium infection in-field

Given the duration from funding to acquisition of equipment, assembly of drone imaging system,
and camera calibration, we were unable to acquire data on the YCEDA-hosted Fusarium trials
that occurred in 2019. Instead, we worked with Dr. Silinksi on imaging grower fields where the
presence of Fusarium-infected heads had been documented. Two flights were conducted on 23
November 2020 (DOY 328) and 20 November 2021 (DOY 324). A grid flight pattern with image
overlap, both forward and lateral, set at 85% was used. Flights were conducted at an altitude of
15 m and 20 m resulting in a ground sampling resolution of 1.96 and 2.62 cm/pixel, respectively.
Total mission time was approximately eight and 15 minutes with dimensions 28 ✕ 139 and 75
✕ 136 m for flights conducted in 2020 and 2021, respectively.

Prior to the capture of thermal imagery, an RGB flight was conducted using a Phantom 4 Pro V2
drone (DJI, Shenzhen, China). A grid flight pattern with image overlap of 85% in both the
forward and lateral directions was used. Flights were conducted at an altitude of 15 m and 20 m
to match the thermal flights. The total mission time was approximately eight and 15 minutes for
flights conducted in 2020 and 2021, respectively.

In 2020, manual canopy temperature measurements were taken of both healthy lettuce heads
and those suspected of being diseased using a handheld infrared thermometer (FLIR TG 165,
FLIR Systems Inc., USA). Measurements were taken with the user standing upright, their arm
fully extended at a 45 degree angle to their body, and the thermometer pointing at the center of
the lettuce head. The measurement was also taken in a manner that would not cast a shadow
on the plants. This methodology was conducted for all manual measurements with the handheld
infrared thermometer to ensure consistency.  

2.3 Data processing

2.3.1 Camera Calibration

Prior to the start of the growing season, the thermal camera was calibrated using a temperature
controlled room located at the USDA Arid Land Agricultural Research Center (ALARC) research
station in Maricopa, AZ. A blackbody (CES100-06/CF/VG, Electro Optical Industries, Santa
Barbara, California) was set up in a temperature controlled room and set to the room
temperature. Once the blackbody and room temperature was stable, three images of the
blackbody were taken using the thermal camera. This step was repeated at 13 different
blackbody temperatures ranging from 5°C to 65°C. Images of the blackbody were taken at eight
different room temperatures ranging from 5°C to 45°C. During this process, the focal plane array
temperature was collected and used to establish eight calibration curves. These eight curves
represent the calibration room temperatures at which the blackbody temperatures were set
across the selected 13 temperatures. The curves were used to interpolate pixel values from
digital number (DN) to degrees Celsius.



Temperatures of the blackbody under each of the calibration room temperatures were imported
into Python (version 3.8) where a linear regression, using ‘scikit-learn’ (Pedregosa et al. 2012),
was performed to establish a general relationship between blackbody temperature (°C) and
digital number (DN). The uncalibrated image was imported into Python, using ‘Pillow’ (Dev n.d.),
and the established linear equation was used to convert the uncalibrated image pixel array to
degrees celsius. The metadata from the uncalibrated image was then associated to the
calibrated pixel array, using the ‘piexif’ library in Python (Piexif, 2015), rendering a calibrated
image that could be used for further processing.

2.3.2 Image processing and temperature extraction

Upon completion of the sUAS thermal flight, the raw TMC video file was uploaded to the
ThermoViewer software, version 3.7 (TeAx Technology GmbH, Germany) so that raw, individual
TIFF images, with data represented as digital numbers, could be exported along with
corresponding image metadata contained in a CSV file. Once single images were exported from
the ThermoViewer software, the digital numbers were converted to temperature values (degree
Celsuis) using the above described calibration model to generate thermal images for further
processing and analyses.

The calibrated thermal images were next imported into Pix4D Mapper for post processing. Initial
steps of processing included selecting the correct camera model
(“ThermalCapture_13.0_640x512 (Grayscale)”, geospatial coordinate system (“WGS 84/UTM
zone 12N”), and processing template (“Thermal Camera”). Image stitching was completed in the
following order based on Pugh, Thorp, and Gonzalez 2021 (a) key points were extracted using
image scale set to “Full” so a tie point cloud could be generated and internal parameters
optimization to ‘All Prior’ since images were calibrated before the orthomosaic processing; (b)
quality reports were assessed to make sure image stitching was acceptable based on the
number of images used, key points used for image alignment, camera optimization, and the
median number of matches per calibrated image; (c) ground control point (GCPs) positions,
measured with a cm-level accuracy using real-time kinematic GPS system (model 5800, Trimble
Inc., Sunnyvale, CA), were imported and manually selected to georeference the images
containing GCPs; (d) reoptimization and matching among the remaining images was completed
to create georeferenced orthomosaic; and (e) generation of a reflectance map of the
orthomosaic based on individual pixel reflectance representing temperature (in °C).

No GCPs were set out during the flights conducted in Yuma as we do not possess a portable
RTK trimble system. With no defined points in the field to reference we are unable to produce a
georeferenced orthomosaic, which limits our ability to process the images in an automated
fashion.

2.3.2.1 Maricopa

To extract plant canopy temperatures from the georeferenced reflectance orthomosaic, the
following workflow was carried out for each individual date that data were collected. First, the full
field orthomosaic was clipped to remove extraneous objects from the scene (vehicles, roads,
etc.) to reduce data artifacts and provide an orthomosaic consisting of plants and soil. Using the
entire orthomosaic, a histogram of pixel values was created that exhibited a clear bimodal
distribution representing plant and soil pixels. Next, k-means clustering, implemented in
‘OpenCV’ (Bradski 2000), was used to find the local maxima of each mode within the bimodal
distribution with these values representing the mean temperatures for plant and soil pixels. With
these points defined, the local minima between them was determined and used as the threshold
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to classify pixels as either “plant” or “soil.” To generate subplot-level plant canopy temperature
values, a custom Python script (Van Rossum & Drake, 2009), which uses a manually developed
GeoJSON shape file (QGIS.org, 2023) to demarcate plot boundaries, was used to extract plant
temperatures from the georeferenced reflectance orthomosaic using the determined
classification threshold. In an effort to mitigate pixel contamination, plant canopy temperature
was extracted by generating a mean using the lowest 33% of plant pixel values comparable to
previous studies (Bian et al. 2019).

2.3.2.2 Yuma

To extract plant canopy temperatures from the non-georeferenced orthomosaic, the following
workflow was carried out. First, visual assessment of the orthomosaic was carried out to identify
symptomatic lettuce heads. The location of interest was confirmed to exhibit disease symptoms
through manual validation using the complimentary RGB imagery collected on the same day.
Once confirmed, the naively stitched thermal orthomosaic was loaded into QGIS and the
“identify features” tool was used to extract individual pixel temperature values. Once extracted,
a manual comparison of symptomatic and non-symptomatic plant temperature was conducted.

3. Results

3.1 MAC results

To validate the ability of the sUAS thermal setup to detect differences in plant canopy
temperature due to differences in irrigation, a correlation analysis was performed. A negative
correlation was observed between irrigation and plant canopy temperature with values ranging
between -0.31 and -0.74, with the lowest and highest correlation values produced on DOY 182
and 224, respectively (Appendix I, Figure 1). Correlations between irrigation and plant canopy
temperature were significant for all dates flown (Appendix I, Figure 1).

To further illustrate the effect of irrigation on plant canopy temperature, plant canopy
temperature and irrigation values were compared between an early (DOY 182) and late (DOY
224) treatment flight (Appendix I, Figure 2). MDL and SOL treatments were cumulatively
irrigated 10.7 mm more than VRI and DRN treatments when the early treatment flight was
conducted with differences in plant canopy exhibiting a 0.5°C difference. During the late
treatment flight, MDL and SOL treatments were cumulatively irrigated 105.94 mm more than
VRI and DRN treatments exhibiting a 3.1°C difference in plant canopy temperature.

3.2 Preliminary results from Yuma work

As mentioned previously, we were unable to collect data on the YCEDA-hosted Fusarium trials
hosted in 2019 due to the duration of time it took to acquire, assemble, and validate the sUAS
thermal imaging system. However, we were able to carry out testing of the thermal sUAS in
2020 and 2021 on grower fields with Fusarium-infected lettuce heads present. During these
evaluations, we conducted both RGB and thermal imaging flights to assess the ability of the
thermography to identify Fusarium-infected heads based on differences in lettuce head
temperature.

Using a handheld IRT, lettuce head temperatures were taken in an effort to detect differences in
temperature between healthy and symptomatic heads in 2020. Temperatures were 28.37°C and
31.73°C on average for healthy and symptomatic lettuce heads. Along with the manual IRT
temperatures, efforts to identify diseased heads using thermal imagery were successful
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(Appendix I, Figure 3). Similar trends were found when comparing healthy and symptomatic
heads in the 2021 thermal imagery. Healthy heads exhibited lower temperatures when
compared to symptomatic heads, with an average difference of 8.66°C (Appendix I, Figure 4).
Due to the manual nature of the sUAS-based thermal temperature extraction and the lower
resolution of the 2020 thermal flight, manual and extracted temperature values could not be
compared for the 2020 flights.

4. Discussion

Differences in canopy temperature of cotton plants under four different irrigation treatments
were found to negatively correlate with irrigation quantity (Appendix I, Figure 1). As the
treatments became more established throughout the growing season, the observed negative
correlation became more pronounced. This trend continued until the end of the season when
overall atmospheric demand was reduced due to lower atmospheric temperatures as summer
ended. These results aid in the validation of the described sUAS thermal setup used to collect
lettuce head temperature data in the Yuma Fusarium wilt trial.

Identification of lettuce heads with Fusarium wilt symptoms was possible using thermography
(Appendix I, Figures 3 & 4). Symptomatic heads were also shown to have a higher temperature
using both manual IRT measurements and the sUAS thermography (Appendix I, Figure 4).
Temperatures extracted from the thermal imagery, however, exhibited a higher difference
between a healthy and diseased lettuce head compared to the manual IRT measurements. It
should be noted that the comparisons made were of two different fields with one grown in 2020
and the other in 2021. The 2021 thermography data was taken over a field where plants
exhibiting advanced stages of Fusarium wilt were removed. The thinning of diseased plants
resulted in the exposure of more bare earth. Regions of exposed soil are generally hotter than
regions with plants because plants actively transpire which results in lower surface temperatures
through evaporative cooling. The higher exposure of hot soil can result in the perception of
hotter plant temperatures due to pixel contamination. The larger the distance between the
camera and the subject, the more area that is covered by a single pixel which will appear hotter
if the surrounding area is contaminated by bare soil. Furthermore, the removal of diseased
plants made it difficult to differentiate between diseased plants and cut stalks due to the low
resolution of the thermal image.

Manually taken temperatures and those extracted from the thermal imagery show promising
results. Both methods indicated higher head temperatures when comparing diseased plants to
healthy ones. Manual measurements, however, are more time consuming and not feasible if
trying to screen a large number of heads. The sUAS-based thermal imagery approach aims to
address this problem by reducing the overall time of data collection. The lower resolution of
thermal imagery makes manual comparisons using thermal imagery difficult. Setting out GCPs
in the field before conducting a thermal flight would allow for accurate georeferencing of the
stitched orthomosaic. Georeferenced orthomosaics also allow for automated and more accurate
extractions of thermal temperatures. Automation of temperature extractions is crucial if one
wants to track the spread and progression of the Fusarium wilt disease. The potential for this
setup to be used as a tool for early disease detection is high as early detection of disease
hotspots can help growers mitigate the spread to other parts of the field.

5. Conclusion

These results demonstrated the potential of sUAS-based thermal imagery in the detection of
water stress as it is able to detect differences in canopy temperature related to differences in



irrigation. Furthermore, the study shows the potential of thermography in the detection of
Fusarium wilt through differences in lettuce head temperatures. It was found that more accurate
identifications were obtained in fields that had not been thinned due to pixel contamination from
the surrounding soil. Future research should investigate the ability of this setup to track the
development and spread of the disease. Temporal data on Fusarium wilt infection will provide
more information to growers that may help mitigate the spread of the disease early in the
growing season.



Appendix I

Figure 1: Correlation and significance values between plant canopy temperature (PCT)
and irrigation throughout the growing season. The -log(p_value) is shown with darker colors
and larger sized points representing highly significant negative correlation values.



Figure 2: Canopy temperature (°C) and irrigation amount (total mm) from an early
treatment and late treatment data set. The top graphs show a grouping between
Drone/Variable Rate Index and Soil/Model irrigation treatments. The bottom graphs show the
irrigation amount for each treatment up to the day shown. There is a large difference in irrigation
amount between Done/Variable Rate Index and Soil/Model irrigation treatments. MDL, model -
determined irrigation amount solely by using an FAO-56 model; VRI, variable rate index - Used
VRI technology for site-specific irrigation in conjunction with the irrigation model to calculate the
estimate; DRN, drone - determined irrigation amount by using FAO-56 model, but adds spatial
crop cover data derived from a drone to achieve more accurate water availability estimates;
SOL, soil - Used spatial data for soil water holding limits in conjunction with the model to
calculate the irrigation estimate.



Figure 3: Identification of lettuce heads exhibiting Fusarium wilt symptoms using
sUAS-based thermal imagery. Lettuce heads thought to be diseased are identified using
thermal imagery (left; white boxes) and are confirmed using RGB imagery (right; red boxes).



Figure 4: Comparison of plant canopy temperature values between healthy and diseased
lettuce heads. Thermal imagery (left) shows that diseased lettuce heads exhibit higher plant
canopy temperature values compared to healthy lettuce heads (shown in white boxes).
Diseased lettuce heads are confirmed using RGB imagery (right; red boxes).
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