
1 

 

  

 

 

 

 

 

Irrigation lateral hydraulic simulation model based on the 

gradient method 
 
 

 D. Zerihun and C.A. Sanchez 

                                           University of Arizona 

                                     Maricopa Agricultural Center 

                                        37860 W. Smith-Enke Rd. 

                                        Maricopa, Arizona 85138 
                                     

                                                                Internal report 

                                                 August, 2016 



2 

 

Content                                                                                         

 

Chapter 1.  Introduction                                                                                                        9 

Chapter 2. Basic pipeline hydraulics, a review                                                                   12 

                  2.1. Flow in a flow-through pipe segment, steady-state condition                    13 

                  2.2. Equations for computing friction head loss                                                14 

                  2.3. Equations for computing local head losses                                                 16 

Chapter 3. Lateral hydraulics, simulation: problem description and formulation                

                  with the gradient method                                                                                    17 

                  3.1. Description of a lateral as a hydraulic network                                           17  

                  3.2. Schematics of lateral hydraulic computational elements                             18 

                  3.3. Pipe network computational methods                                                          19 

      3.4. Problem fomulation with the gradient method                                             22 

3.4.1. Link energy balance                                                                           23 

3.4.2. Continuity at junction nodes                                                              27 

3.4.3. System of Equations                                                                          28 

Chapter 4. Lateral hydraulics, simulation: Numerical solution with the gradient  

                  method                                                                                                                 35  

       4.1. Iterative solution                                                                                            35 

        4.2. Initialization of variable vectors and updating matrices in each           

               gradient iteration                                                                                            44 

            4.2.1. Initialization of the system variable vectors, Q and H                         44 

            4.2.2. Constant vectors q and H0                                                                    44 

            4.2.3. Network connectivity matrices 10, 12, and 21 and the                     

                      vector 10H0                                                                                          44 

                        4.2.4. Computation of the 11Ψ matrix (Table 6 and Eq. 29) at the  

                                  (m+1)th iteration                                                                                    45 

             4.2.5. Computation of the '
11Ψ  matrix (Table 8 and Eq. 33) at the  

                                  (m+1)th iteration                                                                                     46  

 



3 

 

                        4.2.6. Computation of the inverses of the ( )m'
11Ψ and 

                                     ( )






















−

12

1
m'

1121 ΨΨΨ  matrices                                                          49 

                  4.3. Numerical algorithm                                                                                     50 

                  4.4. Model inputs and outputs                                                                              55  

Chapter 5. Model evaluation                                                                                                  55  

       5.1. Data description                                                                                            55 

            5.2. Consistency test of the numerical solution implemented in the                      

                   model                                                                                                            57     

             5.2.1. Test factors and criterion                                                                    57 

             5.2.2. Results of consistency test                                                                  59 

            5.3. Comparison of the current lateral hydraulic model with that   

                   based on manifold hydraulics                                                                       62 

             5.3.1. Introductory discussion                                                                       62 

             5.3.2. Results of model comparison                                                              63 

                  5.4. Comparison of the lateral hydraulic model with EPANET                          67  

                         5.4.1. Introductory discussion                                                                       67   

                         5.4.2. Results of model comparison                                                              68 

         5.5. Model evaluation with measured data                                                          73 

            5.6. Sensitivity analysis                                                                                        75 

                         5.6.1. Introductory discussion                                                                       75 

                5.6.2. Lateral slope                                                                                        76       

                         5.6.3. Lateral diameter                                                                                   80 

                         5.6.4. Lateral pipe absolute roughness                                                           82  

Chapter 6. Summary and Conclusion                                                                                     85 

References                                                                                                                               88 

Appendix I.    Derivation of expressions for the elements of the inverse of  

                       the Jacobian matrix                                                                                           91        

Appendix II.  Algorithm for iterative computation of the Darcy-Weisbach  

                       friction factor                                                                                                    93 



4 

 

 

Appendix III.  Algorithm for computing the 11Ψ matrix at the (m+1)th gradient  

                        iteration                                                                                                            95  

Appendix IV.  Algorithm for computing the '
11Ψ matrix at the (m+1)th iteration                   97  

Appendix V.   Expressions for the derivatives of the friction factor with respect  

                        to pipe segment discharge                                                                               99 

Appendix VI.  Computation of the inverse of a matrix with LU factorization                     101 

Appendix VII. The effect of lateral slope on the broad spatial trends of lateral  

                         pressure head                                                                                                107  

 



5 

 

List of Tables                                                                                                          

 

Table 1. A system of equations describing flow in a lateral with nl links (pipe  

              segments and emitters) and nl+1 nodes, Eqs. 19 and 21                                             30             

Table 2. A system of equations describing flow in a lateral with nl links and  

              nl+1 nodes, partitioned for block matrix representation as shown  

              in Eq. 23                                                                                                                       31 

Table 3. Hydraulic network topological incidence matrix (network connectivity  

              matrix),                                                                                                                      32 

Table 4. Hydraulic network connectivity matrix, 21                                                                33 

Table 5. A system of equations describing flow in a lateral with nl links and 

              nl+1 nodes, partitioned for block matrix representation as shown  

              in Eq. 27                                                                                                                       34   

Table 6. Matrix representation of the nonlinear system of equations (Eq. 29)                          36 

Table 7. A system of nonlinear equations describing flow in a lateral with nl links  

              and nl+1 nodes, partitioned for block matrix representation as shown  

              in Eq. 30                                                                                                                       38 

Table 8. Matrix representation of the linear system of equations solved in  

              each Newton iteration, Eq. 33                                                                                      40  

Table 9. Data used in model evaluation                                                                                     56 



6 

 

List of Figures  

 

Figure 1. Schematic of irrigation lateral pipe configuration and components of  

               specific mechanical energy along a lateral (Notations: D is lateral  

               diameter (m); Q is discharge (L/s); h is pressure head (m); hf is friction  

               head loss (m); g is gravitational acceleration (m/s2); SL is emitter spacing 

               along lateral (m); nl is number of hydraulic links (lateral pipe segments and 

               emitters) (-); L is lateral length (m); V is average cross-sectional flow  

               velocity (m/s); Z is nodal elevation (m); a and b are upstream and downstream  

               end sections of lateral, respectively; HGL is hydraulic grade line; and EGL is  

               energy grade line)                                                                                                        10 

 

Figure 2. Components of specific energy and energy loss in a pipe without outlets                 13 

 

Figure 3. Friction factor for pipe flow                                                                                        15 

 

Figure 4. (a) Schematics of a lateral as a branched hydraulic network with nl hydraulic  

                links and nl+1 nodes and (b) Schematization of  energy relations across an  

                emitter or riser-emitter ensemble (Notations: (.) is node index and [.] is link  

                index, H is total head [m], and V is velocity in the lateral segment just upstream  

                of a junction node and the stream exit velocity at the emitter (m/s), note that  

                discharges are subscripted with link indices and heads are subscripted with 

                node indices)                                                                                                                       19 

 

Figure 5. Junction node along a lateral with a riser-emitter ensemble (Notations: [.]j
u, 

                [.]j
d, and [.]k are components of nodal specific energy and flow velocity at  

                points immediately upstream and downstream of node j and at the boundary 

                node k, respectively, and qj is constant supply or demand at the junction node)      24  

 

Figure 6.  Flow chart depicting the gradient algorithm implemented in the lateral  

                hydraulic model (where m is gradient iteration index; Q and H are link  

                discharge and nodal continuity vectors, respectively; H0 and q are fixed  

                nodal heads and discharge vectors, respectively; 10, 12, 21 are network 

                connectivity matrices; 11 and 11′ are matrices in Eqs. 29 and 33,  

                respectively; Fe and Fc are residuals of the link energy balance and nodal  

                continuity equations, respectively; step is index of intermediate  

                computational steps; and 1-5 are variables for representing intermediate  

                outputs)                                                                                                                      52 



7 

 

Figure 7.  Simplified flow chart showing the sequence of matrix computations for  

                determining the system variables Q and H at the (m+1)th gradient iteration  

                (where: step is index for intermediate computational steps; 1 to10 and  

                1 to 5 are labels for representing intermediate outputs; Note: Details  

                of matrix operations relating to the computation of the inverse of a matrix, 

                as implemented in the current model, are presented in Appendix VI)                      54 

 

Figure 8. Graphs showing percent differences between model computed and manually  

                calculated hydraulic variables and parameters, expressed as percentage of  

                the manually calculated values: (a) Percent difference in friction factor, f, 

                (b) Percent difference in sprinkler discharge, Qs, (c) Percent difference in  

                lateral discharge, Q, and (d) Percent difference in total nodal head, H                 60  

 

Figure 9. Comparison of lateral pressure heads, h, and sprinkler discharges, Qs,  

                computed with the lateral hydraulic simulation model, developed based 

                on the gradient method, and that based on the manifold method:  

                (a) Data set 1, (b) Data set 2, (c) Data set 3, (d) Data set 4, and  

                (e) Data set 5                                                                                                              64   

    

Figure 10. Graphs depicting comparisons of the lateral hydraulic simulation model,  

                  presented here, with a model based on manifold hydraulics and with  

                  EPANET: (a) Percent differences between lateral pressure heads computed  

                  with the gradient and manifold models, h, (b) Percent differences  

                  between sprinkler discharges computed with the gradient and manifold  

                  models, Qs, (c) Percent differences between lateral pressure heads  

                  computed with the lateral hydraulic simulation model and EPANET, h,  

                  and (d) Percent differences between sprinkler discharges computed with  

                  the lateral hydraulic model and EPANET, Qs                                                                                 66               

 

Figure 11. Comparison of lateral pressure heads, h, and sprinkler discharges, Qs,    

                 computed with the lateral hydraulic simulation model and EPANET:  

                 (a) Data set 1, (b) Data set 2, (c) Data set 3,  (d) Data set 4, and   

                 (e) Data set 5                                                                                                                      69 

 

Figure 12. Comparison of lateral pressure head computed with the lateral hydraulic  

                  simulation model, presented here, and measured data: (a) Data set 4,  

                  (b) Data set 5,  (c) Data set 6, and (d) Data set 7                                                     74 

 

Figure 13.  Percent differences between field measured lateral pressure head profiles  

                  and those computed with the lateral hydraulic simulation model, h,  

                  expressed as percentage of measurements                                                               75 

 

 

 



8 

 

Figure 14. Sensitivity of (a) Lateral pressure head to lateral slope, (b) Sprinkler  

                 discharge to lateral slope, (c) Lateral pressure head to diameter,  

                 (d) Sprinkler discharge to diameter, (e) Lateral pressure head to pipe  

                 absolute roughness, and (f) Sprinkler discharge to pipe absolute roughness           77   

 

Figure II.1. Flow chart for computing the Darcy-Weisbach friction factor, f, for the 

                   ith link (i.e., lateral pipe segment or riser pipe) evaluated based on the  

                   link discharge at the mth iteration, Qi
m (where  f c is current estimate of f;  

                    f r is a revised estimate (computed in the (j+1)th iteration) of f; fft is  

                   the value of f for the ith lateral pipe segment when the flow is in the fully 

                   turbulent zone)                                                                                                       95 

 

Figure III.1. Flow chart for updating the 11 matrix at the (m+1)th iteration based on  

                    the discharge vector at the mth iteration, Qm (where i is link index,  fi is the  

                    friction factor for the ith link computed iteratively based on the link  

                    discharge at the mth gradient iteration, and nl is number of links in the  

                    lateral)                                                                                                                    96 

 

Figure V.1. Flow chart for updating the 11′ matrix at the (m+1)th iteration based  

                   on the discharge vector at the mth gradient iteration, Qm (where 
m
i

i Q

'
eQF  

                   is the derivative of the ith link energy balance equation with respect to the 

                   ith link discharge evaluated based on Qi
m; and fi′ is the derivative of f with 

                   respect to the ith link discharge evaluated based on Qi
m)                                    100 

                        



9 

 

1. Introduction 

 

Laterals consitute the basic elements of a pressurized irrigation hydraulic network. A lateral is a 

hydraulic manifold consisting of multiple outlets distributed along its length (Figure 1). The 

spacing between outlets of a lateral can be constant (as in the case of solid-set and set-move 

sprinkler systems) or variable (e.g., center-pivot systems). Lateral outlets are various emission 

devices, including sprinklers placed on the tip of riser pipes or hoses, which in turn are mounted 

onto laterals. They could also be emitters that are placed directly on the laterals as in the case of 

trickle systems. In solid-set and set-move sprinkler and trickle systems, laterals obtain their 

supply from a main or submain line. The hydraulic network of a continuous-move sprinkler 

system is typically composed of a single large diameter lateral that either rotates about a pivot 

point (center-pivot system) or moves in a staright line path (linear move systems). Water could 

be pumped into the field-scale system from a local surface or subsurface source or the system 

may obtain its supply from a larger pressurized distribution line through a hydrant. The model 

presented here can potentially be applied to a wide range of pressurized irrigation laterals. 

However, model evaluation reported in this document is based on laterals used in solid-set and 

set-move sprinkler systems.  

 

Field-scale pressurized irrigation systems are designed and operated assuming a constant head 

and inflow at the system inlet and hence constant discharge at all points in the network for the 

duration of irrigation. Evidently, outlet discharges vary along a lateral or mainline, nonetheless, 

the discharge at any given outlet or within a segment of a lateral or a mainline, in between outlets, 

is invariant with time. At the scale of an irrigated field transient flow does occur, but it typically 

takes place only over short durations following valve opening or closure (e.g., when a pump is 

turned on or off). Hence, for regular irrigation operations flow in such systems can be described 

as steady and nonuniform without loss of generality. The preceding implies that forms of the 

energy conservation and mass continuity equations, applicable to steady incompressible flow 

(Granger, 1995; Larock et al., 2000; Boulos et al., 2006; Miller, 2009), can be used to describe 

the hydraulics of such systems. 

 Hydraulic modeling problems of field-scale pressurized irrigation systems consist of: (1) 

hydraulic design, (2) hydraulic simulation, and (3) hydraulic characterization. In a limited sense,  
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Figure 1. Schematic of irrigation lateral pipe configuration and components of specific  

               mechanical energy along a lateral (Notations: D is lateral diameter (m); Q is discharge  

               (L/s); h is pressure head (m); hf is friction head loss (m); g is gravitational acceleration  

               (m/s2); SL is emitter spacing along lateral (m); nl is number of hydraulic links (lateral  

               pipe segments and emitters) (-); L is lateral length (m); V is average cross-sectional  

               flow velocity (m/s); Z is nodal elevation (m); a and b are upstream and downstream end  

               sections of lateral, respectively; HGL is hydraulic grade line; and EGL is energy grade  

               line) 

 

hydraulic design of a field-scale pressurized irrigation network aims at sizing the network 

elements, including appurtenances such that the pressure and discharge variation in the irrigated 

field is maintained within a preset threshold, which is selected based on economic and irrigation 

uniformity considerations (e.g., Keller and Bliesner, 1990; Martin et al. 2007). Hydraulic 

simulations determine the field-scale spatial distribution of pressure and discharge, given the 

hydraulic, geometric, and topographic characteristics of the system, including the total head at 

the system inlet. Hydraulic characterization computations determine the system hydraulic 

characteristics at the inlet and the head-discharge curves at junction nodes, such as those of the 

intersection of the mainline and laterals. Hydraulic characterization computations are essentially 

repeated hydraulic simulations aimed at mapping the lateral downstream boundary conditions 

(specified in terms of pressure heads that vary within a preset range) to the corresponding lateral 

inlet head-discharge characteristics function (Zerihun and Sanchez, 2012).  
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 Evidently, the design of laterals should be undertaken as part of the design of the entire 

field-scale pressurized irrigation system, which is outside the scope of the study presented here. 

Furthermore, hydraulic characterization computations are useful only if they are performed in the 

context of a field-scale pressurized irrigation system hydraulic simulation or design 

computations, a scale of analysis not envisaged in the current development. Thus the objective of 

the study reported here is limited to the formulation of the lateral hydraulic simulation problem, 

development of applicable numerical solutions, and model evaluation. 

  

The formulation and numerical solution of the irrigation lateral hydraulic simulation 

problem, presented here, is based on an adaptation of the gradient method, developed originally  

for the simulation of pipeline networks with complex topologies. For computational purpose, an 

irrigation lateral is described here as a branched hydraulic network comprised of a series of 

interconnected links, each delimited by nodes. Lateral pipe segments and riser-emitter ensembles 

or emitters are considered as hydraulic links. The network nodes consist of junction nodes with 

unknown heads (marking the intersections of hydraulic links) and fixed head nodes, comprised 

of boundary nodes with externally imposed constant heads. Pipe appurtunances such as valves 

and fittings and other feastures that introduce local head losses are treated as properties of the 

lateral pipe segment they are placed on. Inline devices that add energy into or remove energy 

from the flow are not considered. A lateral sgement (i.e., a flow-through pipe section connecting 

two consecutive emitters) is characterized by a single set of pipe diameter, slope, and hydraulic 

resistance parameter.   

The energy balance and continuity equations for one-dimensional steady incompressible 

flow are used to describe the hydraulics of this system. The energy conservation equation is 

applied across each link and the continuity equation is written for each junction node in a lateral. 

These equations are then coupled to form a nonlinear system, which is partitioned for block 

matrix representation. The resultant system of equations are solved, for the variables (link 

discharges and nodal heads), iteratively with the Newton-Raphson method (e.g., Todini and 

Pilati, 1987; Nielson, 1989; Rossman, 2000; Lansey and Mays, 2000; Boulos et al., 2006; 

Estrada et al., 2009).  

Evaluation of the lateral hydraulic simulation model, developed in the study reported here, 

is conducted at different levels. First the consistency of the numerical solution implemented in 

the model was tested by comparing intermediate and final outputs of the model with manual 
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calculations. Then outputs of the model are compared with outputs of EPANET (Rossman, 2000) 

and another model developed based on manifold hydraulics (Zerihun et al., 2014). The model is 

further evaluated based on comparisons of its outputs with field measured data. In addition, 

sensitivity analysis is conducted in order to evaluate the spatial patterns of model predicted 

lateral hydraulic characteristics under a range of conditions. Seven data sets, consisting of both 

hypothetical and field measured data, covering a wide range of lateral hydraulic, geometric, and 

slope conditions are used in model evaluation. The results of model evaluation suggest that the 

numerical algorithm, implemented in the lateral hydraulic simulation model presented here, is 

sound.  

The study, presented in this report, is limited to the development of a hydraulic model  

that can simulate steady flow processes in irrigation laterals. However, the numerical solution 

developed here can be readily integrated into a field-scale pressurized irrigation system hydraulic 

characterization and simulation model, following the approach described by Zerihun et al. (2014). 

 

This document has six chapters. Chapter 1 is the introduction section. Chapter 2 presents a 

concise description of the basic hydraulic principles/concepts and equations used to model steady 

flow processes in a pipe network, including the principles of energy conservation and mass 

continuity and the formulas used for computing friction and local head losses in pipes. In 

Chapter 3 a pressurized irrigation lateral is described as a branched hydraulic network 

(consisting of hydraulic links and nodes) and the formulation of the lateral hydraulic simulation 

problem with the gradient method is presented. In Chapter 4 the numerical solution of the lateral 

hydraulic simulation problem is developed. Chapter 5 presents model evaluation based on 

sensitivity analysis and comparisons of model outputs with field data and with outputs of 

existing models. Chapter 6 presents summary and conclusion.       

 

2. Basic pipeline hydraulics, a review  

 

The hydraulics of a field-scale pressurized irrigation system is a physical description of water 

flow through a branched (open) pipeline network, consisting of possibly a main, submains, and a 

lateral or laterals, each with multiple outlets. At the scale of an irrigated field, transient flow 

typically occurs only over short durations following valve opening or closure (e.g., when a pump 

is turned on or off). During regular irrigation operations outlet discharges vary along a lateral or 
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a mainline, nonetheless, discharge through a given outlet or in a segment of a lateral or a 

mainline, in between outlets, is invariant with time. Hence, for simulation, design, and 

operational purposes flow in such systems can be described as steady and nonuniform without 

loss of generality. The implication is that forms of the energy conservation and mass continuity 

equations, applicable to steady incompressible flow systems (Granger, 1995; Karney, 2000; 

Larock et al., 2000; Boulos et al. 2006; Miller, 2009), can be used to model the hydraulics of 

such systems. Evidently, flow in a lateral segment, in between outlets, is essentially the same as 

flow in flow-through pipe under steady conditions, hence in the next section the basic hydraulic 

principles/concepts and equations for steady flow in a flow-through pipe will be presented. 

 

2.1. Flow in a flow-through pipe segment, steady-state condition 

 The hydraulics of a flow-through pipe is based on the principles of energy and mass 

conservation (Figure 2). The components of specific mechanical energy of the fluid (which is 

water) at any given point along a pipe consist of: elevation from reference datum to the center 

line of pipe, Z, the (gage) pressure head, h, and the kinetic energy per unit weight of water 

(velocity head, V2/2g). The energy conservation equation for one dimensional steady 

incompressible flow written between any two sections along the pipe, e.g., sections a and b 

(Figure 2), states that the specific mechanical energy of water at section a should be equal to the  
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         Figure 2. Components of specific energy and energy loss in a pipe without outlets 
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algebraic sum of the specific mechanical energy at section b and the friction head loss, hf, and 

local head losses, hl, between sections a and b: 
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If energy is added to the fluid in between sections a and b by a mechanical device such as a 

pump, it can be taken into account by adding it to the left-hand side expression of Eq. 1. For 

steady flow condition, the continuity equation applied to sections a and b of the flow-through 

pipe is  

 

)2(QQ ba =  

 

Although a third equation can be obtained from the application of the principle of momentum 

conservation (e.g., Karney, 2000), this equation is not used in the hydraulic simulation of field-

scale pressurized irrigation pipe networks. Hence the momentum equation is not presented here.  

 

2.2. Equations for computing friction head loss 

The Darcy-Weisbach and the Hazen-Williams equations are commonly used to compute 

friction head loss, hf  (m), in sprinkler irrigation hydraulic applications (Keller and Bliesner, 

1990; Martin et al., 2007). In the study presented here friction head loss is computed with the 

Darcy-Weisbach equation 
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where k1 is a dimensional constant 107.917 mm5s2/L2, Q is discharge through the pipe segments 

(L/s), D is pipe diameter (mm),  L is pipe length (m), and f is a dimensionless friction factor (-), 

which is a function of the surface roughness characteristics of the pipe material, the pipe 

diameter, and the Reynolds number, Re (-). Re  is a dimensionless number used as a measure of 

the relative strengths of the inertial and viscous forces in the flow field 
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In Eq. 4,   is mass density of water (Kg/m3),  is dynamic viscosity of water (Kg/(ms)) which is 

a function of the water temperature,  is kinematic viscosity of water (m2/s), and k2 is 
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dimensionless constant equal to 1.273 (m2(mm)/L). Given pipe material and diameter, the relative 

roughness (defined as the ratio of the pipe absolute roughness, e, to pipe inside diameter, D) is 

used as a measure of the effect of pipe surface roughness on the friction factor, f (e.g., Keller and 

Bliesner, 1990; Larock et al., 2000). The relationship f(Re,e/D) is summarized in a logarithmic 

scale graph, the Moody diagram, Figure 3. The Moody diagram has four regions: the laminar, the 

critical, turbulent transition, and fully turbulent rough. In the laminar range (Re≤2000) where 

viscous forces are dominant, energy loss is entirely due to internal (viscous) friction and the 

friction factor f is a function of Re  
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The Darcy-Weisbach equation is in principle for turbulent flow, however, Eq. 5 is obtained by 

substituting, in Eq. 3, the head loss for laminar flow, expressed with the Hagen-Poiseuille 

equation, and solving the resulting expression for f  (e.g., Marriott et al., 2009). Furthermore, 

when flow velocity increases to an extent that Re exceeds 4000 (turbulent transition zone, Figure 

3), the friction factor, f, becomes a function of both the Reynolds number and the relative 

roughness. Note that the turbulent transition zone is bounded by the dashed line at the top and the 

curve for smooth pipe at the bottom. In this zone, f is computed with the Colebrook-White 

equation, Eq. 6. 

 

 
                                             Figure 3. Fiction factor for pipe flow  
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With a further increase in the Reynolds number beyond a threshold that varies as a function of 

the relative roughness, shown by the dashed line in Figure 3, the flow is in the fully turbulent–

rough zone. In this zone, the friction factor, f, is a function of the relative roughness, e/D, only 

(Figure 3). Hence, Eq. 6 simplifies to  
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For smooth pipes such as plastic with near zero relative roughness, which represents the lower 

limit of the turbulent transition zone (Figure 3), Eq. 6 reduces to  

( ) )8(8.0fRlog2
f

1
e −=  

 

As can be noted from Figure 3, the region between 2000<Re≤4000 is not covered in the moody 

diagram. Approximations of f in this range of Re may involve simply extending the curve for the 

laminar region through the range 2000<Re≤4000 or the use of interpolation schemes from the 

moody diagram. In the model presented here the simple approach of extending the laminar flow 

curve to the range 2000<Re≤4000 is used.   

  

2.3. Equations for computing local head losses 

 Local head losses occur in pipe transitions (such as pipe contractions or expansions, 

fittings, tees, elbows, valves) where the flow is constrained, changes direction, or changes 

velocity and as a result turbulent eddies are generated and dissipated, in the process converting 

part of the mechanical energy to other forms of energy including heat. Local losses occur over 

finite distances, however, these distances cannot be readily determined, hence for practical 

applications they are typically assumed to occur essentially at a point (the location of the 

appurtenance). Generally local head losses are computed as a product of a local head loss 

coefficient, kL, and the local velocity head 
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In Eq. 9, k3 is dimensional constant of the velocity head term, equivalent to 104.917 mm4m(s/L)2. 

The velocity head (discharge and diameter) typically used for computing local head losses is that 

just upstream of the pipe transition (e.g., Miller, 2009). However, if the local head loss is 

associated with reduction in pipe size, the velocity head typically used is the one in the 

downstream pipe segment (Granger, 1995). Furthermore, for changes in pipe diameters (pipe 

size reduction or increase), the local head loss coefficient is a function of the ratio of the 

upstream and downstream cross-sectional areas only (Keller and Bliesner, 1990; Granger, 1995). 

For other kinds of pipe transitions, given the type and geometry, local head loss coefficients in 

theory can vary as a function of the local Reynolds number, inflow and outflow conditions, and 

surface roughness (Miller, 2009). However, accurate determination of the effects of these factors 

for sprinkler system modeling applications is often impractical, hence they are typically treated 

as constant parameters that depend on the type and geometry of the pipe transition. They can be 

obtained from manufacturer’s catalogue or from literature sources (e.g., Keller and Bliesner, 

1990; Granger, 1995) or in principle can be determined through measurements.  

 

3. Lateral hydraulics, simulation: problem description and formulation with the gradient  

method  

 

3.1.  Description of a lateral as a hydraulic network 

For computational purposes a lateral is described here as a simple branched hydraulic 

network consisting of a series of interconnected links, each delimited by nodes. Any hydraulic 

network element (including valves, pumps) across which a head-discharge relationship exists can 

be treated as a link (Boulos et al., 2006). However, as an initial approximation only lateral pipe 

segments (i.e., sections of lateral pipe connecting two consecutive emitters) and riser-emitter 

ensembles (or emitters) are treated here as hydraulic links. Valves, couplers, bends, and other 

pipe appurtenances that introduce local head losses are treated as properties of the pipe segment 

they are placed on. In addition, inline devices that add energy into and/or remove energy from 

the system are not considered.  
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The network nodes consist of junction nodes (marking the intersections of hydraulic links) 

and fixed head nodes (i.e., nodes with externally imposed constant heads). In the current 

development, the points of intersection of the centerlines of the lateral and each riser-emitter 

ensemble or emitter represent the junction nodes. The heads at the junction nodes and the link 

discharges are the system variables and need to be determined as part of the numerical solution. 

Furthermore, in network hydraulics the junction nodes are also treated as points at which, 

externally imposed, constant inflows into or outflows from the system occur. However, in 

irrigation laterals these nodal discharges are typically zero, but an exception is made here for the 

downstream end node. Accordingly, the lateral considered here represents a more general 

scenario in which there is a constant residual outflow at the downstream end, Qres (with 0≤Qres). 

The fixed head nodes represent boundary nodes, which include the inlet end of a lateral and the 

downstream ends of each riser-emitter ensemble or emitter. As will be shown subsequently each 

of these nodes have known constant heads.  

Note that the term emitter is used here in the general sense to describe a water emission 

device commonly used in field-scale pressurized irrigation systems, including emitters used in 

trickle irrigation systems and various types of sprinklers used in sprinkle systems. 

 

3.2. Schematics of lateral hydraulic computational elements 

Figure 4 shows a schematic of a lateral with a series of emitters or riser-emitter ensemble 

distributed along its length. The spacing between emitters (the length of a lateral pipe segment) 

can be constant or variable and the individual emitters along the lateral can have the same or 

variable hydraulic characteristics. Each lateral pipe segment may have appurtenances, (such as 

valves, fittings, bends, and cross-sectional changes) arranged in series, that introduce local 

energy losses. Note that an important constraint on the application of the friction head loss 

equation to pipe segments between outlets, and also between appurtenances, is that the spacing 

between outlets as well as appurtenance must be sufficiently large for the flow within the pipe 

segment to be fully developed (Larock et al., 2000).  

 As noted in a preceding section, each lateral pipe segment and each emitter or riser-

emitter ensemble represents a hydraulic link, the end points of which are labeled as nodes. It is 

assumed here that a lateral has at least one pipe segment and one emitter or riser-emitter 

ensemble. Hence, with such a configuration the number of links in a lateral, nl, is an even integer 
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and is equally divided between the pipe segments and the emitters (Figure 4). The number of 

nodes in a lateral is then nl+1, with nl/2 junction nodes (labeled here as nj) and nl/2+1 fixed head 

nodes, nf. In a pipe network the number of junction nodes, nj, fixed head nodes, nf, links, nl, and 

loops, nL, are related by the network topological equation, Eq.10 (e.g., Wood and Rayes, 1981; 

Boulos and Altman, 1991):  

 
)10(1nnnn Lfjl −++=  

Substituting the expressions for nf and nj in Eq. 10 and noting that nL for a lateral is zero, it can be 

observed that Eq.10 is satisfied for the lateral configuration considered here (Figure 4). 
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Figure 4 (a) Schematics of a lateral as a branched hydraulic network with nl hydraulic links and  

               nl+1 nodes and (b) Schematization of energy relations across an emitter or riser-emitter  

               ensemble (Notations: (.) is node index and [.] is link index, H is total head [m], and V is  

               velocity in the lateral segment just upstream of a junction node and the stream exit  

               velocity at the emitter (m/s), note that discharges are subscripted with link indices and  

               heads are subscripted with node indices)  

 

3.3. Pipe network computational methods 

In the simulation of a hydraulic network, operating under steady-state conditions, the 

modeling objective is to determine all the link discharges, Q, and nodal heads, H.  A system of 

equations obtained through the application of the principles of conservation of mass and energy 

are used to formulate the simulation problem. These equations are nonlinear, because of the 

nonlinear dependence of head losses on discharge, and are solved iteratively. The most  
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commonly used technique, for solving these equations, is the Newton-Raphson method coupled 

with a suitable linear systems solver (e.g., Shamir and Howard, 1968; Epp and Fowler, 1970; 

Todini and Pilati, 1987; Boulos et al., 2006). One may discern four approaches for formulating 

the hydraulic network simulation problem (Boulos et al., 2006): (1) the loop method, (2) the 

node method, (3) the loop-node method, and (4) the pipe-node method. In subsequent paragraphs 

a concise description of each of these methods is presented, before that, however, we will define 

a few terms that are used in subsequent discussion. A path: is a series of links that connect two 

nodes in a hydraulic network. A loop: in the context of a pressurized hydraulic network analysis, 

a loop is a closed hydraulic circuit, it is a path that starts and ends at the same node. A pseudo-

loop: is a path between two fixed head nodes of the network.   

 

The loop method: With this method one energy conservation equation is written for each loop 

and pseudo-loop. The resultant system of equations is nonlinear in the link discharges, hence 

need to be solved iteratively. In each iteration, the energy equation for each loop is linearized 

about the current link discharges and is expressed in terms of the unknown incremental discharge, 

Q. In addition continuity requirements need to be met at each node. The nodal continuity 

requirements remain satisfied through the iterative solution provided the solution starts with 

assumed discharges that meet the criteria at each of the nodes. In each iteration, the locally 

linearized loop energy equations can be assembled forming a system (with the same number of 

equations as unknowns) and are solved for the unknowns (the Q vector) simultaneously (e.g., 

Epp and Fowler, 1970) or each linearized loop equation can be solved separately for the 

respective loop Q’s (Cross, 1936). At the end of an iterative step, the discharge corrections are 

applied to the discharges in all the pipes in the respective loops (taking into account the direction 

of flow in each pipe relative to the path and noting that if a pipe is shared by two loops, the 

corrections from both loops need to be applied to that pipe). If the computed discharge 

corrections for all the loops are within a preset error tolerance, then the solution is obtained. If 

not, the iterative computation continues, until either a solution is obtained or a fixed number of 

maximum iterations is exceeded. Following a solution, the corresponding nodal heads can be 

calculated from the head discharge relationships, beginning at the point of known nodal head. An 

advantage of the loop method, compared to the other methods, is that it involves the least number 

of equations.  
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The node method: With the node method, a continuity equation is written for each junction node. 

Then using the link head discharge relationship each discharge going into or from a node is 

expressed in terms of the ratio of the difference between the respective nodal heads and the link 

hydraulic resistance coefficient. Note that this formulation combines the continuity and energy 

conservation equations (e.g., Shamir and Howard, 1968). The resultant nonlinear system with the 

same number of equations as unknowns can then be solved for the nodal heads iteratively with 

the Newton method. Once the nodal heads are determined, the link discharges can then be 

evaluated based on the link head discharge equations beginning at the point of known nodal head.     

 

The node-loop method: In the node-loop method, the energy conservation equation is written for 

each loop and pseudo-loop in the network and the continuity equation is formulated for each 

junction node (Wood and Charles, 1972; Wood and Rayes, 1981). However, in contrast to the 

loop method, here the energy conservation and continuity equations are expressed in terms of the 

pipe discharges. The resultant nonlinear system with equal number of equations and unknowns  

can be solved with the linear theory method (Wood and Charles, 1972) or with the Newton-

Raphson method (Boulos et al., 2006). Once the link discharges are computed, the nodal heads 

are calculated using the head-discharge relationships, beginning at the point of known nodal head.  

 

The pipe-node method: the pipe-node method, commonly referred to as the gradient method, was 

proposed for application in pipe network analysis by Todini and Pilati (1987). The method writes 

one energy balance equation for each pipe and a continuity equation for each junction node. The 

resultant nonlinear system of equations has the same number of equations and unknowns 

(consisting of link discharges and nodal heads) that can be solved iteratively. Typically, the 

Newton iterative method, combined with a suitably selected linear system solver, is used to solve 

this system of equations (e.g., Todini and Pilati, 1987; Salgado et al., 1987; Boulos, 2006). 

Compared to other approaches, this formulation leads to a system with the largest number of 

equations. However, it is generally considered to be numerically as robust and efficient as the 

other methods or better (e.g., Salgado et al., 1987; Boulos et al., 2006). Todini and Pilati (1987) 

indicated that the gradient method (i.e., the pipe-node method) represents a more general 

formulation that guarantees a unique solution, compared to that of the loop method. Nielsen 

(1989) has shown that the node and loop methods are special cases of the pipe-node method. 



22 

 

Hence there is some ground to consider the pipe-node method as a more general representation 

of the hydraulic network simulation problem.  

Among the four hydraulic network formulation approaches described above, the pipe-

node method and the node method in principle can be directly applied to the lateral hydraulic 

(branched network) simulation problem considered here. In the study reported here, the pipe-

node method, henceforth referred to as the gradient method (e.g., Todini and Pilati, 1987).  is 

used to formulate and solve the lateral hydraulic simulation problem.          

 

3.4. Problem fomulation with the gradient method 

As noted in a preceding section, for a hydraulic simulation problem the modeling 

objective is to determine all the link discharges, Q, and the nodal (total) heads, H, of a lateral. It 

can be noted from Figure 4 that the hydraulics of a lateral, described here as a branched network, 

can be defined in terms of 2(nl+1) discharges and nodal heads equally divided between Q and H. 

Evidently, a lateral has nl link discharges, which are unknown, plus the residual discharge at the 

downstream end of the lateral, Qres, which is given.  

 Furthermore, for a simulation problem, the head at the upstream end of the lateral is 

considered known and is used as the datum. In addition, as will be shown subsequently, the  

elevation of each emitter, which is known, can be treated as an imposed head on the emitter (e.g., 

Rossman, 2000, Estrada et al., 2009). Noting that there are nl/2 emitters in a lateral (Figure 4), it 

then follows that the number of fixed head nodes, nf, in a lateral can be given as nl/2+1.  

Considering that the residual outflow discharge, Qres, as well is given, the total number of 

known heads and discharges become nl/2+2. In which case, the number of system variables 

(unknowns) for a lateral is 3nl/2 link discharges and nodal heads. Out of these variables, the 

number of unknown nodal heads (located at the junction nodes) is nl/2 and the number of 

unknown link discharges is nl. Furthermore, it can be observed that for the branched network 

(lateral) configuration presented in Figure 4, nl  link head loss equations and nl/2 junction 

continuity equations can be written, leading to a total of 3nl/2 equations. Recalling that nl is an 

even integer, it follows that the product 3nl/2 is also integer. Hence, the resultant set of equations 

represents a coupled system with 3nl/2 equations and 3nl/2 unknowns with a possible unique 

solution. 
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3.4.1. Link energy balance   

Energy equation, lateral pipe sections: Note that the following development assumes the flow 

direction indicated in Figure 4. Now consider a path connecting two consecutive nodes on a 

lateral, labeled here as nodes j and k, such that j<k. Further assume that the path proceeds from 

node j to node k, then the energy balance equation for the lateral segment linking these nodes can 

be expressed as  
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In Eq. 11, i is link index and j and k are indices of the upstream and downstream nodes of the ith 

pipe segment, respectively, and Hj
 and Hk are the total heads at the respective nodes (Figure 4). 

The first term in the parenthesis in Eq. 11 is related to friction head loss in the ith pipe segment 

and the parameters βi and ξi are the hydraulic resistance coefficient and exponent of discharge in 

the friction head loss equation, respectively  
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and the second term in parenthesis is related to the sum of local head losses that occur along the 

ith pipe segment. The parameters πi
p and γ can be expressed as     
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where p is index of an appurtenance in a pipe segment, kLi
p is the local head loss coefficient for 

the pth appurtenance in the ith pipe segment (-), and γ (-) is the exponent of discharge in the local 

head loss equation (Eq. 9). As will be explained shortly, local head losses considered here do not 

include those occurring at a junction node. Pipe appurtenances such as valves and fittings as well 

as changes in the orientation of the direction of pipe can be placed anywhere along the pipe 

segment. The exceptions are that the appurtenances cannot be placed at junction nodes and in the 
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current formulation reduction in pipe diameter is assumed to occur only at the upstream end of 

the lateral pipe segment. Furthermore, increases in pipe diameter cannot be handled by the model.  

Note that in the simple branched network considered here, the flow directions are known. 

Furthermore, the paths assumed in problem formulation, Eq. 11, follow the same direction as 

those of the link flows, hence the algebraic sign of the discharges is always positive. Therefore, 

the use of absolute values in Eq. 11 is only meant to conform with accepted convention, in the 

formulation of the energy balance equation, for more general network problems, where flow 

directions in some of the links can be opposite to the path and the effect of the algebraic sign of 

the discharge on head loss and its derivative has to be taken into account implicitly as in the form 

given in Eq. 11 or explicitly as that used, for example, by Boulos et al (2006).          

 

Energy equation, emitter or riser-emitter ensemble: In this section first the energy relations for 

the general case of a riser-emitter ensemble will be presented and the equation for the case in 

which emitters are placed directly on a lateral will then be shown to be a reduced form of that for 

a riser-emitter ensemble. Figure 5 depicts discharges into and from the lateral junction node 

along with components of specific energy and velocity at points immediately upstream and 

downstream of the junction node and at the boundary node (downstream end of the emitter).   
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Figure 5. Junction node along a lateral with a riser-emitter ensemble (Notations: [.]j

u , [.]j
d, and  

               [.]k are components of nodal specific energy and flow velocity at points immediately   

               upstream and downstream of node j and at the boundary node k, respectively, and qj is  

               constant supply or demand at the junction node) 
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Note that the differentiation of the fluid specific energy at the junction node, j, into those at 

points immediately upstream and downstream of the node is a conceptual mechanism designed 

to acknowledge (for computational and presentation purposes) the existence of a discontinuity 

(i.e., two different levels) in the specific energy curve at a junction node, which stems from the 

fact that for practical computational purposes local head losses are assumed to occur at a point. 

Thus, it needs to be pointed out that these points are spatially coincident with the junction node 

at which they are presumed to occur (i.e., there is no horizontal distance and elevation difference 

between these points). 

 

The energy equation for the ith riser-emitter ensemble along the path connecting a point 

immediately upstream of node j (point u in Figure 5) and node k is given as 
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where hei is head loss in the ith emitter, including exit loss, and hfi  is the friction head loss in the 

ith riser pipe. Note that the junction node local head loss associated with the branching flow is 

not considered in Eq. 14 and the reason for this will be explained shortly. Noting that the left 

hand side of Eq. 14 is equal to Hj
u and that the emitter discharges into the atmosphere, hence hk = 

0, Eq. 14 reduces to  
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Note that in Eq. 15, the expression Hj
u-hfi is the residual head just upstream of the emitter and Zk 

is the elevation of the emitter. Thus Eq. 15 states that the head differential across the emitter is 

equal to the sum of the velocity head at the nozzle and emitter losses. The left-hand side of Eq. 

15 is typically represented as a power function of the emitter discharge. The friction head loss 

through the riser pipe as well can be expressed as a function of emitter discharge, thus Eq. 15 can 

be given as   
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The parameters βi
1 and ξi

1 are coefficients and exponents of the emitter head-discharge function. 

For sprinklers, the nozzle head-discharge relationships are customarily expressed in terms of 

pressure heads. Hence, the use of such data to determine the parameters βi
1 and ξi

1 implies a level 

of approximation.  

 

If emitters are placed directly on the lateral, the energy equation, Eq. 16, reduces to  
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In summary, Eqs. 11 and 16 or Eq. 17 as the case may be, constitute the basic forms of the 

energy conservation equations applicable to pipe segments and riser-emitter ensemble, 

respectively. Note that the preceding problem formulation presumes that emission device with 

different hydraulic characteristics can be used along a lateral. It also assumes that diameters, 

lengths, spatial orientations, slopes, and resistance characteristics of pipe segments can vary 

along a lateral and that a couple of different pipe appurtenances can be fitted into any of the 

lateral pipe segments. However, a single set of pipe diameter, slope, and hydraulic resistance is 

used to characterize a lateral pipe segment.  

 

A note on junction node head losses 

As noted above, the model presented here does not take into account the local head losses 

at junction nodes. The reason is that consideration of the junction node local head losses leads to 

forms of energy equations that are not readily solvable within the framework of the gradient 

method. The head loss equations for each riser-emitter ensemble, Eq. 16, eventually need to be 

coupled with the head loss equations for pipe segments, Eq. 11, to form a system that describes 

the hydraulics of the entire lateral. For the resultant system of equations to be readily solvable, 

the nodal head Hk in Eq. 11 and Hj
u in Eq. 16 should refer to the same total head. Furthermore, 

the energy equation for each link needs to be a function of a single discharge, if it is to produce a 
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consistent system, when coupled with the continuity equations. However, that will not be 

necessarily the case, if the junction node local head losses are taken into account. 

At the jth junction node, the local head loss associated with the through-flow can be taken 

into account in two ways. It can be included in the energy equation written for the lateral pipe 

segment immediately upstream of the node. Alternatively it can be incorporated into the energy 

equation for the pipe segment immediately downstream of the node. If the first option is adopted, 

then Hk in Eq. 11 is equal to Hj
d and not Hj

u (Figure 5). In which case, in order to make Eq. 16 

consistent with Eq. 11, the sum of Hj
d and the junction local head loss associated with the 

through-flow needs to be substituted for Hj
u in Eq. 16 (i.e., Eq. 16 need to be expressed in terms 

of Hj
d). However, with such a formulation it can readily be shown that the resultant riser-emitter 

ensemble energy equation becomes a function of two discharges, the discharge in the ith riser-

emitter ensemble and the discharge in the pipe segment immediately upstream of the junction 

node. The implication is that the resultant system of equations has a structure that is not readily 

solvable within the framework of the gradient method.  

Alternatively, if the junction head loss associated with the through-flow is included in the 

energy equation of the pipe segment immediately downstream of the node, then Hk in Eq. 11 and 

Hj
u in Eq. 16 would refer to the same total head and Eqs. 11 and 16 become consistent. However, 

the resultant equation for the downstream pipe segment would become a function of two 

discharges, the discharge in it and in the lateral pipe segment immediately upstream of it. Thus, 

the problem of solvability will crop up again.     

A simplification implemented in the current model is to assume that the junction node 

local head losses both for the branching- and through-flow are negligible. Observe that once the 

junction loss associated with the branching-flow is neglected, the energy equation for a riser-

emitter ensemble can be expressed in the form given in Eqs. 16 or Eq. 17. Thus Eqs. 11 and 16 

or 17 represent the link energy balance equations for a lateral pipe segment and a riser-emitter 

ensemble, respectively. Note that the fact that the through-flow loss is not included in Eq. 11 

implies that Hk is equal to Hj
u which in turn is equal to Hj

d. 

 

3.4.2. Continuity at junction nodes 

The principle of mass conservation, when applied to a junction node (e.g., Figure 5), 

requires that the sum of flows into a junction minus the sum of flows leaving a junction should 

be equal to the constant supply or demand at the junction node: 
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where Qi is the discharge in the ith link that carries flow into or from the jth junction node,  

I is the set of pipes that carry discharge into node j, and L is the set of pipes that carry discharge 

leaving node j, and qj is constant supply or demand at node j, which is generally zero for an 

irrigation lateral. Note that qj is subtracted from the net nodal inflow if it represents demand is 

added to the net nodal inflow if it represents supply. 

 

3.4.3. System of Equations  

A more general form of the continuity equation applicable to the network problem can be 

expressed in a form analogous to that given by Nielsen (1989)  
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In Eq. 19, ζij is the network connectivity coefficient and is given as  
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For simplicity, let the expression in parenthesis in Eqs. 11 and 16 be labeled as θi, in which case 

the energy equation for the ith link can be expressed in a form analogous to Eq. 19  
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In Eq. 21, τq is a coefficient defined as 
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where q is an index of the coefficient τ and αij is the network connectivity coefficient defined in 

accordance with Eq. 20. Application of Eq. 21 to all links (pipe segments and emitters) results in 

nl nonlinear equations. Applying the continuity equation, Eq. 19, to all the junction nodes results 

in nl/2 linear equations. The nonlinear energy balance equations and the linear continuity 

equations can then be coupled resulting in the system of equations, summarized in Table 1. Note 

that the total heads in the link energy balance equations (the upper half of Table 1) are arranged 

into two separate blocks for convenience: unknown nodal heads, H’s, and known nodal heads,  

H0’s. Furthermore, by comparing Eqs. 16 and 21 it can be noted that in Table 1 the known nodal 

head of an emitter is equal to its elevation. 

Now, let the terms in the system of equations presented in Table 1 be partitioned into blocks 

as shown in Table 2 (i.e., horizontally divided into blocks of energy balance and continuity 

equations and vertically into terms that are functions of discharge and head). The vector 

representation of the corresponding system is    
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In Eq. 23 
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and is an nl(nl+1) and21 is an nl/2nl  topological incidence matrices and q is a vector of 

constant nodal inflows or outflows with nl/2 elements. Note that for a typical irrigation lateral, 

the elements of the q vector are zero except for the residual outflow.  
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Table 1. A system of equations describing flow in a lateral with nl links (pipe segments and emitters) and nl+1 nodes, Eqs. 19 and 21 

 1 Q 1 + 0 + . . . . . . + 0 + H 2 + 0 + . . . - H 01 + 0 + . = 0

0 +  2 Q 2 + 0 + . . . . . . + 0 - H 2 + 0 + . . . . + 0 + H 03 + . = 0

. + 0 +  3 Q 3 + 0 + . . . . . + 0 - H 2 + H 4 + 0 + . . . . . + 0 + 0 + = 0

. + . + 0 +  4 Q 4 + 0 + . . . + 0 + 0 - H 4 + 0 + . . . . . . H 05 + = 0

. + . + . + 0 +  5 Q 5 + 0 + . . . + 0 + 0 - H 4 + H 6 + 0 + . . . . . . 0 + = 0

. + . . . 0 . + 0 + . . . . + 0 + 0 . . . . . . . . = 0

. + . . . . . . . . . . . . . . . . . . . . . . = 0

. + . . . . . . . . . . . . . . . 0 + . = 0

. + . . . . . . . . + 0 + . . . . . . . + H 0nl + 0 = 0

. + . . . . . . . . 0 +  nl-1 Q nl-1 + 0 + . + 0 - H nl-2 + H nl + . . . + 0 + 0 = 0

0 + 0 + 0 + . . . . . . . + 0 +  nl Q nl + 0 + 0 + . + . + 0 - H nl + . . . + 0 + H 0nl+1 = 0

Q 1 - Q 2 - Q 3 + 0 + 0 . . . . . . + 0 . . . + 0 + . . . . 0 = 0

0 + 0 + Q 3 - Q 4 - Q 5 + . . . . . . . . . . . . . . = 0

. + . + 0 + 0 + Q 5 - . + . + 0 + . = 0

. + . . . 0 + . . . . = 0

. + . . . . . . . . . . . . . = 0

. + . . . . . . . . . . . . . = 0

. + . . . . . . . . Q nl-2 - Q nl-1 + 0 + . . . . . . . . . . . . . = 0

0 + . . . . . . . . . + Q nl-1 - Q nl . . . . . . . . . . . . + 0 = q nl

 
1. The upper section of the table (above the dashed line) consists of nl nonlinear link energy balance equations and the lower section of the table consists of nl/2 linear 

junction node continuity equations;  

2. The link energy equations with odd-numbered subscripts represent the energy balance in each pipe segment, starting at the upstream end of the lateral and proceeding 

consecutively through the lateral to the downstream end (Figure 4);     

3. The link energy equations with even-numbered subscripts represent the energy balance in each emitter or riser-emitter ensemble, starting from the upstream end 

emitter/riser-emitter ensemble and proceeding consecutively through the lateral to the downstream end;   

4. For pipe segments   −− +=
p

1

i

p

i

1

iii |Q||Q|   and 

5. For riser-emitter ensemble 
)1(

ii

)1(

i

1

ii
i

1
i |Q||Q|

−−
+=

  and for emitter placed directly on a lateral 
)1(

i

1

ii

1
i|Q|

−
=

  

6. The junction node continuity equations start from the upstream end junction node and proceeds consecutively through the lateral to the downstream end;   

7. The nodal heads are of two types: the H’s represent the unknown nodal heads (to be determined as part of the numerical solution) and are subscripted with even-

numbers and the H0’s represent known nodal heads and are subscripted with odd-numbers; Note that the unknown nodal heads occur at the junction nodes and the 

known nodal heads occur at the boundary nodes; 

8. Note that H01 is the given total head at the lateral inlet and H03 through H0nl+1 are elevations of the respective emitters, starting from the upstream end emitter and 

proceeding consecutively through lateral to the downstream end; 

9.    qnl = Qres 
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Table 2. A system of equations describing flow in a lateral with nl links and nl+1 nodes, partitioned for block matrix representation as shown in Eq. 23 

 1 Q 1 + 0 + . . . . . . + 0 + H 2 + 0 + . . . - H 01 + 0 + . = 0

0 +  2 Q 2 + 0 + . . . . . . + 0 - H 2 + 0 + . . . . + 0 + H 03 + . = 0

. + 0 +  3 Q 3 + 0 + . . . . . + 0 - H 2 + H 4 + 0 + . . . . . + 0 + 0 + = 0

. + . + 0 +  4 Q 4 + 0 + . . . + 0 + 0 - H 4 + 0 + . . . . . . H 05 + = 0

. + . + . + 0 +  5 Q 5 + 0 + . . . + 0 + 0 - H 4 + H 6 + 0 + . . . . . . 0 + = 0

. + . . . 0 . + 0 + . . . . + 0 + 0 . . . . . . . . = 0

. + . . . . . . . . . . . . . . . . . . . . . . = 0

. + . . . . . . . . . . . . . . . 0 + . = 0

. + . . . . . . . . + 0 + . . . . . . . + H 0nl-1 + 0 = 0

. + . . . . . . . . 0 +  nl-1 Q nl-1 + 0 + . + 0 - H nl-2 + H nl + . . . + 0 + 0 = 0

0 + 0 + 0 + . . . . . . . + 0 +  nl Q nl + 0 + 0 + . + . + 0 - H nl + . . . + 0 + H 0nl+1 = 0

Q 1 - Q 2 - Q 3 + 0 + 0 . . . . . . + 0 . . . + 0 + . . . . 0 = 0

0 + 0 + Q 3 - Q 4 - Q 5 + . . . . . . . . . . . . . . = 0

. + . + 0 + 0 + Q 5 - . + . + 0 + . = 0

. + . . . 0 + . . . . = 0

. + . . . . . . . . . . . . . = 0

. + . . . . . . . . . . . . . = 0

. + . . . . . . . . Q nl-2 - Q nl-1 + 0 + . . . . . . . . . . . . + 0 = 0

0 + . . . . . . . . . + Q nl-1 - Q nl + 0 . . . . . . . . . . 0 + 0 = q nl
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Matrices  and 21 define the hydraulic network connectivity configuration relative to 

flow direction and are often referred to as the network topological incidence matrices (e.g., 

Boulos and Altman, 1991). In this document, however, we will use the more practical phrase, 

network connectivity matrices (e.g., Boulos et al., 2006), to refer to these matrices. These  

matrices describe which node in the network is connected to which other node or nodes, by 

which link or links, and what the flow direction is in each of the links. The elements of matrices 

 and 21 are defined in accordance with Eq. 20, hence they take values of -1, 0, or +1 only. 

The exact form of matrix  is shown in Table 3. Note that parts I and II of matrix   represent 

elements of the network with unknown and known nodal heads, respectively.  

Furthermore, the form of matrix 21 can be readily deduced by comparing Eqs. 19, 23 and  

Table 2 and is given in Table 4. 

  

      Table 3. Hydraulic network topological incidence matrix (network connectivity matrix),  

 

2 4 6 8 10 . . . n l 1 3 5 7 9 . . . n l+1

1 1 0 -1 0 . 0

2 -1 0 . 0 1 0 . .

3 -1 1 . . 0 0 . .

4 0 -1 0 . . . 1 .

5 . -1 1 . . . 0

. . 0 -1 . . .

. . . . .. .

. . .

. . .

. . .

0 0 . .

-1 1 . 0

n l 0 . . 0 -1 0 . . . 1

             I (nodes with unknown heads)       II (nodes with known heads )

L
in

k
 i
n

d
ic

e
s,

 i
 

Node indices, j

 

 

Note that a close look at Eqs. 19 and 21 and Tables 1 and 2 shows that the elements of the 

network connectivity matrices are coefficients of the terms in the energy balance and continuity 

equations, hence they are direct results of the physical description of steady flow in a pipe 

network. In general, an important computational utility of these matrices is that they 

automatically keep track of changes in flow direction during numerical solutions. However, it is  
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important to note that for the simple branched network considered here (Figure 4), the flow 

directions are known. Hence, once these matrices are initialized at the start of the numerical 

solution, they need not be updated during the computation. 

                           

      Table 4. Hydraulic network connectivity matrix, 21 
  

              

1 2 3 4 5 . . . n l

2 1 -1 -1 0 . . . . 0

4 0 0 1 -1 -1 0 . .

6 0 1 -1 . . .

. . . -1 -1 0

          n l 0 . . . . . . . . 0 1 -1

N
o

d
e
 i
n

d
ic

es
, 
j

Link indices, i 

 

 

 

Now, if the terms of the energy equations with given total heads (Table 2) are moved to the right 

hand side as shown in Table 5, the resultant system is  
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Note that in Eq. 27 the 12 and 10 matrices are obtained by partitioning matrix   into blocks 

representing elements of the network with known and unknown heads, respectively. 12 is an 

nlnl/2 and 10 is an nl(nl/2+1) matrices and are shown as parts I and II of matrix  (Table 3), 

respectively. Furthermore, comparing matrix 12 (Part I of Table 3) and 21 (Table 4) shows that  

12 = 21
T.  

 In addition, it can be observed that the H and H0 vectors in Eq. 27 are obtained by 

partitioning the h vector, Eq. 26, into the unknown and known head vectors, respectively:  

 

  )28(H.,.,.H,Hand}H.,..,H,H{ 1nl00301
T
0nl42

T
+== HH
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Table 5. A system of equations describing flow in a lateral with nl links and nl+1 nodes, partitioned for block matrix representation as shown in Eq. 27 

 1 Q 1 + 0 + . . . . . . + 0 + H 2 + 0 + . . . = + H 01 + 0 + .

0 +  2 Q 2 + 0 + . . . . . . + 0 - H 2 + 0 + . . . . = 0 - H 03 + .

. + 0 +  3 Q 3 + 0 + . . . . . + 0 - H 2 + H 4 + 0 + . . . . = . + 0 + 0 +

. + . + 0 +  4 Q 4 + 0 + . . . + 0 + 0 - H 4 + 0 + . . . . = . . - H 05 +

. + . + . + 0 +  5 Q 5 + 0 + . . . + 0 + 0 - H 4 + H 6 + 0 + . . . . = . . 0 +

. + . . . 0 . + 0 + . . . . + 0 + 0 . . . . = . . . .

. + . . . . . . . . . . . . . . . . . = . . . . .

. + . . . . . . . . . . . . = . . . 0 + .

. + . . . . . . . . + 0 + . . . . = . . . - H 0nl-1 + 0

. + . . . . . . . . 0 +  nl-1 Q nl-1 + 0 + . + 0 - H nl-2 + H nl = . . . + 0 + 0

0 + 0 + 0 + . . . . . . . + 0 +  nl Q nl + 0 + 0 + . + . + 0 - H nl = . . . + 0 - H 0nl+1

Q 1 - Q 2 - Q 3 + 0 + 0 . . . . . . + 0 . . . + 0 = 0

0 + 0 + Q 3 - Q 4 - Q 5 + . . . . . . . . . = 0

. + . + 0 + 0 + Q 5 - . + . + 0 + . = 0

. + . . . 0 + . . . . = 0

. + . . . . . . . . . . . . . = 0

. + . . . . . . . . . . . . . = 0

. + . . . . . . . . Q nl-2 - Q nl-1 + 0 + . . . . . . . . = 0

0 + . . . . . . . . . + Q nl-1 - Q nl + 0 . . . . . . 0 = q nl
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The system in Eq. 27, with 3nl/2 equations and 3nl/2 unknowns (Table 5 and Eqs. 25 and 28), 

can be expressed in terms of block matrices as  
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Details regarding the form of the triangular block matrix, the individual blocks, and the vectors 

in Eq. 29 are given in Table 6. Advantages of partitioning the matrix and vectors into blocks are: 

(i) As will be shown subsequently, the 22 matrix, which is zero, does not add to the 

computational overhead and (ii) For simple branched networks, such as irrigation laterals, the 

network connectivity matrices 10, 12, and 21 are constants and once initialized they need not 

be updated during subsequent computation, thus differentiation of these matrices from the 11 

matrix provides a more convenient way of handling them, which contributes to a more efficient 

numerical solution. 

 

4. Lateral hydraulics, simulation: Numerical solution with the gradient method 

 

4.1. Iterative solution  

In order to develop the iterative solution, Eq. 27 will be recast in the following form 
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The form of the corresponding system of equations is presented in Table 7. The system in Eq. 30 

is nonlinear and needs to be solved iteratively. The most commonly used technique for solving 

Eq. 30 is the Newton-Raphson method. With this method, in each iteration, a linear system of 

equations (which represent the first-order Taylor series approximation of the solution about the 

current iterates) are solved with an appropriate linear systems solver. In vector form, this system 

of equations is given as: 

 

 )31(m1mm
Fxθ −=+
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       Table 6.  Matrix representation of the nonlinear system of equations, Eq. 29  

 11  12 Q  10

 1 0 . . . . 0 1 0 . . . Q 1 = -1 0 . H 0

0  2 0 . . . 0 -1 0 . . . . Q 2 = 0 1 . H 01

. 0  3 0 . . . 0 -1 1 0 . . . . Q 3 = . 0 0 H 03

. . 0  4 0 . . 0 0 -1 0 . . . . Q 4 = . . 1 0 . H 05

. . . 0  5 0 . . . 0 0 -1 1 0 . . . . . = . . 0 . . .

. . . . 0 . 0 . . . . 0 -1 0 . . . . = - . . . . . .

. . . . . . . . . . . . . . . . . . . = . . . . . . .

. . . . . . . . . . . . . = . . . 0 . .

. . . . . . . . . 0 . . . . = . . . 1 0 H 0nl-1

. . . . . . . . . 0  nl-1 0 . 0 -1 1 Q nl-1 = . . . 0 0 H 0nl+1

0 0 0 . . . . . . . 0  nl 0 0 . . 0 -1 Q nl = . . . 0 1

1 -1 -1 0 0 . . . . . . 0 . . . 0 H 2 = 0

0 0 1 -1 -1 . . . . . . . . . H 4 = 0

. . 0 0 1 . . . . H 6 = 0

. . . . 0 . . . . . = 0

. . . . . . . . . . . . . . . = 0

. . . . . . . . . . . . . . . = 0

. . . . . . . . . 1 -1 -1 0 . . . . . . . . H nl-2 = 0

0 . . . . . . . . . 1 -1 0 . . . . . . 0 H nl = q nl

 21 0 H q
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where m is iteration index,  m is the Jacobian matrix of the system, evaluated at the mth estimate 

of the variable vector, x; and xm+1 is the vector of incremental changes in the variables at the 

(m+1)th iteration. Noting that each iteration produces a variable vector that only approximates 

the solution, substituting the mth estimate of the variables in Eq. 30 yields Fm, which is a vector 

of the residuals of energy balance and continuity. Considering the system of equations presented 

in Table 7, it can be noted that in Eq. 31 
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In Eq. 32, ( )Tm
ieF is the transpose of the gradient vector of the energy balance equation, for the 

ith link, evaluated based on the mth estimate of the variables; ( )Tm
jcF is the transpose of the 

gradient vector of the continuity equation, for the jth junction node, (note that these vectors are 

constants and will be discussed subsequently); 1+m

iQ is the incremental change in the discharge 

in the ith link at the (m+1)th iteration; 
1+m

jH is the incremental change in the unknown head at 

the jth node and at the (m+1)th iteration; m

eiF  is the residual of the ith energy balance equation 

evaluated based on the mth estimate of the variables; and 
m

jcF is the residual of the continuity 

equation, at the jth junction node, evaluated based on the mth estimate of the variables.  
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Table 7. A system of nonlinear equations describing flow in a lateral with nl links and nl+1 nodes, partitioned for block matrix representation as shown in   

              Eq. 30 

F e1 =  1 Q 1 + 0 + . . . . . . + 0 + H 2 + 0 + . . . - H 01 + 0 + . = 0

F e2 = 0 +  2 Q 2 + 0 + . . . . . . + 0 - H 2 + 0 + . . . . + 0 + H 03 + . = 0

F e3  = . + 0 +  3 Q 3 + 0 + . . . . . + 0 - H 2 + H 4 + 0 + . . . . . + 0 + 0 + = 0

F e4  = . + . + 0 +  4 Q 4 + 0 + . . . + 0 + 0 - H 4 + 0 + . . . . . . H 05 + = 0

F e5  = . + . + . + 0 +  5 Q 5 + 0 + . . . + 0 + 0 - H 4 + H 6 + 0 + . . . . . . 0 + = 0

. + . . . 0 . + 0 + . . . . + 0 + 0 . . . . . . . . = 0

. + . . . . . . . . . . . . . . . . . . . . . . = 0

. + . . . . . . . . . . . . . . . 0 + . = 0

. + . . . . . . . . + 0 + . . . . . . . + H 0nl-1 + 0 = 0

. + . . . . . . . . 0 +  nl-1 Q nl-1 + 0 + . + 0 - H nl-2 + H nl + . . . + 0 + 0 = 0

F enl  = 0 + 0 + 0 + . . . . . . . + 0 +  nl Q nl + 0 + 0 + . + . + 0 - H nl + . . . + 0 + H 0nl+1 = 0

F c2 = Q 1 - Q 2 - Q 3 + 0 + 0 . . . . . . + 0 . . . + 0 + . . . . 0 = 0

F c4 = 0 + 0 + Q 3 - Q 4 - Q 5 + . . . . . . . . . . . . . . = 0

F c6  = . + . + 0 + 0 + Q 5 - . + . + 0 + . = 0

. + . . . 0 + . . . . = 0

. + . . . . . . . . . . . . . = 0

. + . . . . . . . . . . . . . = 0

. + . . . . . . . . Q nl-2 - Q nl-1 + 0 + . . . . . . . . . . . . + 0 = 0

F cnl  = 0 + . . . . . . . . . + Q nl-1 - Q nl + 0 . . . . . . . . . . 0 - q nl = 0

 
Fei = the ith link energy balance equation and Fcj = is the jth junction node continuity equation  
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If the Jacobian matrix, the variable vector, and the vector of residuals (Eq. 32) are partitioned as 

shown in Table 8, then the system in Eqs. 31 can be expressed in terms of block matrices as  
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Comparing Eqs. 31 and 33, it can be observed that  
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As noted in the preceding section, each row of the Jacobian matrix represents the transpose of 

the gradient vector of the ith link energy balance or the jth nodal continuity equations. It can then 

be readily observed that the rows of each of the (11′)
m, 12, and 21 matrices, in Eq. 34, are 

subsets of their respective gradient vectors (Table 8). In Eqs. 33 and 34, (11′)
m is the 11′ matrix 

(which is a diagonal matrix) evaluated based on Qm. Exact mathematical expressions for the 

derivatives of the link energy balance equations with respect to the link discharges (i.e., diagonal 

elements of 11′ matrix) are presented in section 4.2.5.  

Although matrices 12 and 21 appear in both equations 29 and 33 (see also Tables 6 and 

8), it needs to be pointed out that these matrices are related to different systems of equations 

when used in Eqs. 29 and 33. In the context of Eq. 29, they are related to the system comprised 

of the energy balance and continuity equations and are derived in accordance with Eq. 20. In Eq. 

33 they are subsets of the gradient vectors of the energy balance and continuity equations, hence 

obtained through differentiation of the conservation equations.  

 

We will now derive an expression for the variables, Q and H, at the (m+1)th iteration. The 

derivation presented subsequently is broadly patterned after the work of Todini and Pilati (1987).  

 

Based on Eq. 33 and 34, the incremental change in the variable vector at the (m+1)th iteration 

can be expressed as  
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         Table 8. Matrix representation of the linear system of equations solved during each Newton iteration, Eq. 33                
(  11 ')

m
 12  Q   F e

0 . . . . 0 1 0 . . . Q 1 =   F e1

0 0 . . . 0 -1 0 . . . . Q 2 =   F e2

. 0 0 . . . 0 -1 1 0 . . . . Q 3 =   F e3

. . 0 0 . . 0 0 -1 0 . . . . =

. . . 0 0 . . . 0 0 -1 1 0 . . . . . = .

. . . . 0 . 0 . . . . 0 -1 0 . . . . = .

. . . . . . . . . . . . . . . . . . . = .

. . . . . . . . . . . . . =

. . . . . . . . . 0 . . . . =

. . . . . . . . . 0 0 . 0 -1 1 Q nl-1 =     F enl-1

0 0 0 . . . . . . . 0 0 0 . . 0 -1 Q nl =   F enl

1 -1 -1 0 0 . . . . . . 0 . . . 0 H 2 =   F c2

0 0 1 -1 -1 . . . . . . . . . H 4 =   F c4

. . 0 0 1 . . . . H 6 = .

. . . . 0 . . . . . = .

. . . . . . . . . . . . . . . = .

. . . . . . . . . . . . . . . = .

. . . . . . . . . 1 -1 -1 0 . . . . . . . . H nl-2 =      F cnl-2
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1. The blocks 11′, 12, 21, and the zero matrix in Table 8 constitute the Jacobian matrix,, Eqs. 31 and 32; 

2. Each row of the Jacobian matrix is the transpose of the gradient vector of the ith link energy balance or the jth nodal continuity equation; the gradient 

vectors of the link energy balance equations are evaluated based on the mth approximation of the discharge vector, Qm; The gradient vectors of the nodal 

continuity equations are constants that, in the current application, remain unaltered once they are set in the first iteration;  

3. 
m
i

i
Q

'
eQF is the derivative of the ith link energy balance equation with respect to the ith link discharge, evaluated based on the mth estimate of the ith 

link discharge;   

4. (
'
11Ψ )m is a diagonal matrix and each of its rows are obtained by truncating the transpose of the gradient vector of the respective link energy balance 

equations at the vertical dashed line; 

5. Each row of matrix 12 is a subset of the transpose of the gradient vector of the respective link energy balance equations (i.e., each entry represents the 

derivative of the link energy balance equation with respect to an unknown nodal head); 

6. Each row of matrix 21 is obtained by truncating the transpose of the gradient vector of the corresponding nodal continuity equation at the vertical dashed 

line (i.e., each entry represents the derivative of the continuity equation with respect to a link discharge); 

7. Q is the vector of incremental changes in link discharges; 

8. H is the vector of incremental changes in unknown nodal heads;   

9. Fe is the vector of residuals of the link energy balance equations evaluated based on the mth approximation of the variables;  

10. Fc is the vector of residuals of the junction continuity equations evaluated based on the mth approximation of the link discharge; 
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For convenience we label the inverse of the Jacobian as   (i.e., ( ) 1m −
= θβ ), where 

 

)36(
2221

1211









=

ββ

ββ
β  

 

Substituting Eq. 36 in Eq. 35 and expanding yields an expression for the incremental changes in 

the system variables, δQ and δH, at the (m+1)th iteration in terms of the elements of the inverse 

of the Jacobian matrix 
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Expressions can be obtained for the elements of the   matrix in terms of the elements of the 

Jacobian matrix. 
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and the expression ( )
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
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Ψ is the inverse of matrix '

11Ψ evaluated based on the mth 

approximation of the link discharge vector. The details of the derivation of Eqs. 39-42 is 

presented in Appendix I.   
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Based on Eq. 30, the expressions for the residuals of the link energy balance and nodal continuity 

equations, evaluated in terms of the mth estimate of the variable vector, can be given as   
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In Eq. 44, 11

m is matrix 11 (i.e., the diagonal matrix given in Eq. 24) evaluated based on the 

mth estimate of the discharge vector, Qm, and Hm is estimate of the junction nodal head vector at 

the mth iteration. Note that matrix operations involving Eq. 45 conveniently exclude the zero 

matrix, 22, which may contribute to efficient numerical solution.  

 

Eqs. 37-42, 44, and 45 can be used to obtain expressions for the revised estimates of the 

variables in the current iteration, Qm+1 and Hm+1.  

 

Expression for Hm+1: Substituting Eqs. 41, 42, 44, and 45 in Eq. 38 yields 
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Rearranging terms, Eq. 46 can be written as 
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which is equivalent to  
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Noting that Hm+1 = Hm+Hm+1, the expression for Hm+1 can be given as 
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Expression for Qm+1:  Substituting Eqs. 39, 40, 44, and 45 in Eq. 37 yields  

 

( ) ( )

( ) ( ) )50(m
21

1

12
m

2112
m

010
m

12
mm

11
m

21

1

12
m

2112
mm1m

QΨqΨαΨΨα

HΨHΨQΨαΨΨαΨΨααQ

−+

++







−−=

−

−+
 

 

Expanding and simplifying the first term of Eq. 50 yields 
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Noting that the third term in Eq. 51 is equal to -m12H
m+1 (Eq. 49), the expression for Qm+1 

can be simplified  
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which can then be reduced further   
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Noting that Qm+1 = Qm+Qm+1, the expression for Qm+1 can be given as 
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In terms of the expression, ( )
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Ψ , Eqs. 49 and 54 (i.e., estimates of the system variables, Q 

and H, at the (m+1)th iteration) can be given as  
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The computational steps for determining the system variables, Q and H, at the (m+1)th iteration 

(Eqs. 55 and 56) within the context of a Newton-Raphson iterative procedure is presented in 

section 4.3. Before that, however, a discussion on initialization of the variable vectors and on 

updating the matrices, of Eqs. 55 and 56, in each gradient iteration is presented in section 4.2.    

   

4.2. Initialization of variable vectors and updating matrices in each gradient iteration   

In order to compute a revised estimate of the variable vector, Q and H, at the (m+1)th 

iteration, with Eqs. 55 and 56, the matrices 10, 12, 21, 11
m, (11′)

m, [(11′)
m]-1,  

(21 [(11′)
m ]-1 12)

-1, and the vectors H0, q, and Qm need to be known. The approaches used, in 

the current model, for initialization of the system variables and for updating these matrices in 

each iteration are described here.     

 

4.2.1. Initialization of the system variable vectors, Q and H  

The nodal head at the inlet end of a lateral, H01, is specified as an input. The initial heads 

at each of the junction nodes downstream of the lateral inlet, H0, are calculated assuming a linear 

initial nodal head profile that decreases from the inlet to the distal end of the lateral by a total 

amount of 0.05H01. Noting that the gradient method does not require the initial discharge vector 

to satisfy continuity requirement, for each emitter the initial discharges, Qi
0, are computed with 

the emitter head discharge function based on the local nodal heads. The initial emitter discharges 

along with the residual discharge at the downstream end of the lateral are used to calculate initial  

lateral pipe segment discharges.  

 

4.2.2. Constant vectors q and H0  

The fixed nodal heads, H0, and the constant in- or out-flows at junction nodes, q, are 

specified as model inputs. For irrigation laterals the elements of the q vector are zero except for 

the residual discharge at the downstream end of the lateral. The elements of the H0 vector 

consists of the known heads at the boundary nodes, which includes the head at the inlet end of 

the lateral and elevations of the emitters. These vectors are set at the start of the computation (m 

= 0) and remain unaltered in subsequent iterations.         

 

4.2.3. Network connectivity matrices 10, 12, and 21 and the vector A10H0  

The matrices 10 , 12, and 21 are formed at the variable initialization phase in 

accordance with Eq. 20. For irrigation lateral, these matrices remain unchanged through  
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subsequent iterations. The product 10H0 is also a constant vector computed at the start of the 

simulation and need not be updated in subsequent iterations.  

 

4.2.4.  Computation of the 11Ψ matrix (Table 6 and Eq. 29) at the (m+1)th iteration  

The 11 matrix, evaluated based on the link discharge vector at the mth iteration, Qm, is 

used in the (m+1)th iteration. This matrix is composed of two sets of alternating rows, the rows 

related to the head loss equations for pipe segments, on one hand, and those related to the energy 

equations for riser-emitter ensembles or emitters, on the other. Elements in these rows are 

computed as follows    

 

(i)  Matrix rows related to lateral pipe segment energy equations (i.e., odd numbered rows in  

      the 11 matrix):  

                Each element in the ith row of the 11 matrix represents the productqi for  

      the ith link of the lateral (Eq. 21). As can be noted from Eq. 22 and also Table 6, for the ith   

      row only one of these products (i.e., the diagonal element of 11, the element for which i = q)  

      is nonzero.  

    For the ith pipe segment, the parameter i is the parenthetical expression on the left  

      hand side of Eq. 11. Hence i is the sum of a term related to friction head loss and another  

      term related to local head losses (Table 1). The local head loss terms, in the expression for i,  

      can be evaluated directly given applicable coefficients. However, the friction head loss term  

      is a function of the ith pipe segment discharge at the mth iteration, Qi
m, and the hydraulic  

      resistance coefficient, i (Eq. 12). i is a function the pipe segment length, diameter, and   

      Darcy-Weisbach friction factor,  fi. Pipe segment length and diameter are inputs to the model,  

      but fi needs to be computed as a function of Qi
m. For flows with Reynolds number, Re, not  

      exceeding 4000, the friction factor can be calculated directly with Eq. 5. For turbulent flow,    

      however, the formula is implicit in the friction factor, thus the friction factor needs to be  

      computed iteratively. The iterative procedure for computing fi, implemented in the current  

      model, is presented in Appendix II. Note that the numerical algorithm for computing fi is  

      described within the context of the larger sub-process for computing the 11 matrix, which is     

      presented in Appendix III. Observe that at any given iteration - say at the (m+1)th gradient  

      iteration - fi and matrix 11 are computed based on the ith lateral pipe segment discharge at  

      the mth iteration, Qi
m.  
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(ii) Rows related to riser-emitter ensemble or emitter (i.e., even numbered rows in the 11  

      matrix):  

    As noted above, each entry in the ith row of the 11 matrix represents the product qi  

      for the ith link in the lateral (Eq. 21). Furthermore, for the ith row (i.e., the ith emitter) only  

      one of these products (i.e., the diagonal element of 11) is nonzero (Table 6).  

                Considering a scenario in which the emitter is placed on a riser, the parameter i for the  

      ith riser-emitter ensemble is given in terms of the expression in parenthesis on the left-hand  

      side of Eq. 16. Hence i is the sum of a term related to the emitter head-discharge  

      characteristic function and another term related to friction head loss in the riser pipe  

      (Table 1). The term related to emitter head-discharge characteristics can be evaluated   

      directly. However, the term related to friction head loss needs to be evaluated following the  

      approach described for a lateral pipe segment in step i above. 

     For the case in which emitters are placed directly on laterals the expression for i  

         consists of only the term related to the emitter head-discharge function (Eq. 17) and  

      can be evaluated directly.  

 

4.2.5.   Computation of the '
11Ψ  matrix (Table 8 and Eq. 33) at the (m+1)th iteration 

         The 11 matrix, evaluated based on the link discharge vector at the mth iteration, Qm, is 

used in the (m+1)th iteration. Each row of the 11 matrix is a subset of the transpose of the 

gradient vector of the corresponding link energy balance equation (Table 8). As is the case with 

the  11 matrix, the 11  matrix is comprised of two sets of alternating rows, the rows related to 

the head loss equations for lateral pipe segments, on one hand, and those related to the energy 

equations for riser-emitter ensembles or emitters, on the other. Elements in these rows are 

computed as follows    

 

(i) Matrix rows related to lateral pipe segment energy equations (odd numbered rows of the 11   

     matrix):  

           It follows from the preceding description of the link energy balance equations (Eq. 21)  

     that for the ith row only one of the elements (i.e., a diagonal element) of the 11  matrix is  

     nonzero (Table 8). Furthermore, it can be observed that the diagonal element on the  
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     ith row of the 11  matrix is equal to the derivative of Eq. 21 with respect to the ith lateral  

     pipe segment discharge, which essentially reduces to the derivative of Eq. 11 
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     where '

ieQF is the derivative of the ith link energy balance equation with respect to the ith  

     link discharge (Table 8).   

  Note that Eq. 11 represents a more general form of the head loss equation for a pipe    

     segment, where link flow direction relative to the path is taken into account. However, Eq. 57  

     has a simpler form, in which the link flow direction relative to the path is not explicitly  

     considered. The reason is that in the simple branched hydraulic network considered here the  

     direction of flow is known and is the same as the path followed in formulating  

     pertinent equations.  

 

     Expanding Eq. 57 yields  
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     Substituting the expressions for βi and πi
p (Eqs. 12 and 13) in Eq. 58 results in  
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     In Eq. 59, the local head loss terms can be evaluated directly once the appropriate head loss  

     coefficients, kL, are known. However, the friction head loss term can be fully evaluated only  

     after the derivative of fi with respect to the pipe discharge, Qi, is determined. The derivatives  

     of the friction factor with respect to the ith lateral pipe segment discharge,
i

i

Q

f




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      Derivation of the expressions in Eqs. 60 and 61 are presented in Appendix IV. The fi value  

      calculated with Eq. 60 or 61, as the case may be, is then substituted in Eq. 59 to compute the  

      diagonal element of the ith row of matrix 11 . The numerical algorithm, implemented in  

      the model, for computing matrix 11  is presented in Appendix V. Note that at the (m+1)th  

      gradient iteration , fi′ (Eq. 60 or 61) and the elements of matrix (11 )m (Eq. 59) are  

      computed based on the ith lateral pipe segment discharge at the mth iteration, Qi
m.  

 

(ii) Rows related to emitters (even numbered rows): It follows from the energy balance equation   

      (Eq. 21) that for the ith row only one of the elements (i.e., a diagonal element) of the 11   

      matrix is nonzero (Table 8). Furthermore, considering a scenario in which the emitter is  

      placed on a riser, the diagonal element on the ith row of the 11  matrix is equal to the  

      derivative of Eq. 21 with respect to the ith emitter discharge, which essentially reduces to the  

      derivative of Eq. 16 

                              

      
( )

)62(
Q

Q
QF

i

2
ii

11
i

i
1
i

1
i

iQ
'
e




+=






 − 




 

                         

      Equation 16 represents a more general form of the energy equation for an emitter/ 

      riser-emitter ensemble. However, noting that the flow in a lateral has a known direction and  

      is the same as the path assumed to formulate the equation, a simpler form is used to obtain  

      the derivatives of the energy equation for the ith emitter (Eq. 62). In Eq. 62 the first and  

      second terms, on the right hand side, are the derivatives, with respect to emitter discharge, of  

      the emitter head-discharge function and the friction head loss in the riser pipe, respectively.  

      The first term can be evaluated directly and the second term needs to be evaluated following  

      the same procedure as that described for lateral pipe segments (step i). Note that for the case  

      in which emitters are placed directly on the lateral, the friction head loss term in Eq. 62 drops  

      out resulting in a form that can be evaluated directly.   
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4.2.6.   Computation of the inverses of the ( )m'
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         As noted in the preceding section the inverse of matrices '
11Ψ  and ( ) 12

1
m'

1121 ΨΨΨ

−









 

need to be computed before Hm+1 and Qm+1 can be evaluated with Eqs. 55 and 56. An approach 

based on LU factorization is used to compute the inverse of these matrices. A detailed discussion 

of the steps used in computing the inverses of these matrices with the LU factorization method, 

as implemented in the model developed in the current study, is presented in Appendix VI. An 

outline of the basic concept, broadly based on the discussion by Press et al. (1997), will be 

presented concisely in this section. 

 

Consider a square matrix, , of some arbitrary dimension, qq, with elements labeled as ij, such 

that 

 

 )63(Δij R     

  

In Eq. 63, i and j are row and column indices, respectively, of matrix ; R is the set of real 

numbers; and  is the standard set notation that implies that ij is a member of the set of real 

numbers. 

 

Further assume that matrix  is nonsingular and has an inverse, -1, then by definition  

 

 )64(1−= ΔΔI   

 

where I is identity matrix with the same dimension as  and can be defined as  
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In Eq. 65, ij is the element of I on its ith row and jth column. Note that  -1 has the same 

dimension as  and its elements, labeled here as ij, are real numbers.  

 

We assume here that matrix  can be factorized into a lower triangular, L, and an upper 

triangular, U, matrices with LU factorization method, such that    
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)66(LUΔ=  

 

Substituting Eq. 66 in Eq. 64 yields        

 

)67(1−= LUΔI  

 

Letting 

 

)68(1−= UΔΦ  

 

where  is a q q matrix with elements ij, such that ij  R; Eq. 67 can be expressed as 

 
)69(LΦI =  

 
Computation of the inverse of matrix ,  -1, with an LU factorization algorithm is then 

undertaken in the following steps  

 

i.    Factorize  : Factorize matrix  into a lower, L, and an upper, U, triangular matrices (Eq.  

      66) with Crout’s method; 

ii.  Compute  : Compute  (Eq. 69) through forward substitution, starting from the first row  

      and proceeding sequentially down to the bottom row;    

iii. Compute -1: Compute  -1 (Eq. 68) through back substitution, starting from the bottom  

      row and proceeding sequentially up to the first row;  

 

4.3. Numerical algorithm  

The lateral hydraulic simulation model presented here is a C++ program, developed 

based on the numerical procedures described in sections 4.1, 4.2, and Appendix I-VII. Given the 

hydraulic, geometric, and slope data of a lateral, computation starts with initialization of system 

variables (Q and H), and setting up the network connectivity matrices (10, 12, and 21), and 

constant vectors (q and H0). A flow chart depicting the Newton-Raphson iterative procedure for 

computing the system variables (Q and H), as implemented in the current model, is presented in 

Figure 6. The following is a summary of the computational steps  

 

1. Set m = 0 (where m is the gradient iteration index) and proceed to step 2; 

2. Initialize system variables: Q0 and H0 and proceed to step 3; 
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3. Create matrices: 10, 12, 21, q, H0, and compute the constant vector 10H0 and proceed to 

step 4; 

4. Compute matrix 11
m (i.e., the 11 matrix at the mth gradient iteration) and proceed to step 5; 

(Note: The sub-process implemented in the model for computing 11
m is described in 

Appendix III); 

5. If 0<m, proceed to step 6; If m = 0, proceed to step 10; 

6. Compute residuals of energy balance, Fe
m, and continuity, Fc

m, with Eqs. 44 and 45; proceed 

to step 7; 

7. Convergence test, proceed to step 7a: 

7a. Energy balance equations: If |Fe
m| ≤ 10-7, proceed to step 7b; If not proceed to step 8; 

7b. Continuity equations:  If |Fc
m| ≤ 10-7, proceed to step 14; If not proceed to step 8; 

8. If m ≤ MaxIteration, proceed to 10; If MaxIteration<m,  proceed to step 9; (where 

MaxIteration is the maximum number of allowable gradient iterations and is internally set in 

the model to 30); 

9. Newton iteration failed to converge, end computation;  

10. Compute matrix (11′ )
m  (i.e., the 11′ matrix at the mth iteration) and proceed to step 11; 

(Note: the sub-process implemented in the model for computing (11′ )
m is described in 

Appendix V)  

11. Compute Hm+1 in steps 11.1 to 11.4; (Note: A simplified flow chart depicting the sub-

processes for computing Hm+1
 is shown in Figure 7) 

11.1. Compute  1  
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          and proceed to step 11.2      

11.2. Compute  2 
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          and proceed to step 11.3;                   
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m, Eqs. 44 and 45 

 step = 1?
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(m+1) = 4 − 5, Eq. 76

     m≤30?  Compute 2, Fig 7

 Compute 3, Fig 7

 Compute 4, Fig 7 Compute 5, Fig 7

 
   
      Figure 6.  Flow chart depicting the gradient algorithm implemented in the lateral hydraulic model (where m is gradient iteration index; 

                      Q and H are link discharge and nodal continuity vectors, respectively; H0 and q are fixed nodal heads and discharge vectors,  

                      respectively; 10, 12, 21 are network connectivity matrices; 11 and 11′ are matrices in Eqs. 29 and 33, respectively;  

                      Fe and Fc are residuals of the link energy balance and nodal continuity equations, respectively; step is index of intermediate   

                      computational steps; and 1-5 are variables for representing intermediate outputs)      
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11.3. Compute  3  
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          and proceed to step 11.4;    

11.4. Determine Hm+1    
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               and proceed to step 12;   

 

12. Compute Qm+1 in steps 12.1 to 12.3 (Note: A simplified flow chart depicting the sub-process  

for computing Qm+1 is shown in Figure 7):        

12.1. Compute 4  
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               and proceed to step 12.2;      

12.2. Compute 5  
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        and proceed to step 12.3; 

12.3. Determine Qm+1 
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and proceed to step 13; 

13. Set iteration index m = m+1 and proceed to step 4; 

14. Solution vector is Qm and Hm, end computation;  
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       Figure 7. Simplified flow chart showing the sequence of matrix computations for determining the system variables Q and H at the  

                       (m+1)th gradient iteration (where: step is index for intermediate computational steps; 1 to 10 and 1 to 5 are labels for  

                       representing intermediate outputs; Note: Details of matrix operations relating to the computation of the inverse of a matrix, as  

                       implemented in the current model, are presented in Appendix VI) 
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 4.4.    Model inputs and outputs 

The model developed in the current study obtains its input data from space delimited text 

file. The input data file has a tabular format, which is designed to provide sufficient flexibility 

for taking into account spatial variations in the input data. In the input data table, each row 

represents the hydraulic, geometric, and elevation data relating to a hydraulic link, and associated 

nodes, of the lateral. The specific data items include: lateral pipe segment length, diameter, 

relative roughness, distance between a node and the inlet end of the lateral, nodal elevation, 

emitter discharge coefficients, riser pipe data, and local head loss coefficients for pipe 

appurtenances. The input data file also contains nontabular data, which includes residual 

discharge at the downstream end of the lateral, total head at the inlet end of the lateral, and data 

items related to lateral configuration. 

  The model produces various types of output data following a successful simulation. The 

main outputs of the numerical simulation are the link discharge vector (discharges in lateral pipe 

segments and emitters), Q, and total heads at each of the lateral junction nodes, H. In addition, 

the model generates such outputs as velocity heads and friction head losses in each of the lateral 

pipe segments, local head losses, head differential across each emitter, pressure head at each 

junction node, and piezometric head profile along the lateral. 

 

5. Model evaluation  

 

Evaluation of the lateral hydraulic simulation model, developed here, is conducted at different 

levels. First the consistency of the numerical solution implemented in the model was tested by 

comparing intermediate and final outputs of the model with manual calculations. Then the 

outputs of the model are compared with those of EPANET (Rossman, 2000) and another model 

developed based on manifold hydraulics (Zerihun et al., 2014). The model is further evaluated 

based on comparisons of its outputs with field measured data. Finally, sensitivity analysis is 

conducted in order to evaluate the spatial patterns of model predicted lateral hydraulic 

characteristics under a range of conditions.  

 

5.1. Data description  

The data sets used in model evaluation are summarized in Table 9. Data sets 1, 2, and 3 

are hypothetical and data sets 4 to 7 are obtained through field measurements (Zerihun et al., 

2011). These data sets cover a wide range of hydraulic, geometric, and slope conditions. Lateral  
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            Table 9. Data used in model evaluation 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

(a) The laterals considered here are those used in solid-set or set-move sprinkler systems and the sprinkler riser pipe height and diameter are 46.0cm  

and 12.5mm, respectively; furthermore, all laterals are assumed to be consisting of aluminum pipe segments and the corresponding pipe absolute 

                      roughness is set at 0.127mm (Keller and Bliesner, 1990); 
(b) Data sets 4 to 7 represent measured data along four laterals of a solid-set sprinkler system (Zerihun et al., 2011). The laterals have the  

same geometric and hydraulic characteristics, except for the average longitudinal slope and total head and elevation at the lateral inlet;  
(c) The sprinkler used in these laterals are impact sprinklers and the models and nozzle sizes are: for data sets 1 and 2, WeatherTec 10-20 with nozzle  

size of 7/64′′; for data sets 3 to 7, WeatherTec 10-10 with nozzle size of 5/64′′; 1 and 2 are the coefficient and exponent of the sprinkler  

head-discharge function obtained based on the sprinkler pressure and discharge data in manufacturer’s catalogue (https://www.weathertec.com);  
(d) In data set 3 the lateral has three sections each with different diameters: 76.2mm between 0.0 and 130.0m, 50.8mm from 130.0 to 270.0m, and 

38.1mm between 270.0 and 400.0m; the local head loss coefficients used are 0.27 for the location at which pipe size changes from 76.2 to 50.8mm  

and 0.17 for the location where pipe diameter changes from 50.8 of 38.1mm (Granger, 1995);  
(e) Lateral slope for data sets 4 to 7 vary between 0.06% (data sets 4, 6, and 7) to 0.04% (data set 5); furthermore, elevations at  

the lateral inlets are: 0.0m (data set 1), 10.0m (data sets 2 and 3), and vary between 98.859 and 99.523m for data sets 4 to 7;       
(f) Total head at the lateral inlet of data sets 4 to 7 are: 152.0 (data set 7), 153.0 (data set 6), 155.0 (data set 5) and 157.0m (data set 4). Measurements 

       along these lateral (which belong to the same field-scale sprinkler system) were made in the course of different irrigation events, hence the  

       differences in total head along mainline;     
    

Lateral variables/parameters  Units 
Data sets(a) 

1 2 3 4-7(b) 

Sprinkler spacing m 10.0 10.0 10.0 9.14 

Coefficient of sprinkler pressure head 

discharge function, 1 , 
(c) 

L/(s m2) 0.0258 0.0258 0.0125 0.0125 

Exponent of sprinkler pressure head 

discharge function, 2,         

 

- 0.502 0.502 0.521 0.521 

Lateral diameter(d)  mm 50.8 101.6 76.2/50.8/38.1 76.2 

Lateral length m 300.0 300.0 400.0 374.7 

Lateral slope(e) - 0.0 +0.005 -0.001 -0.0004/-0.0006 

Constant total head at the lateral inlet(f) m 50.0 45.0 50.0 152.0-157.0 

Residual discharge at downstream end  L/s 1.5 2.75 0.0 0.0 

https://www.weathertec.com/
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diameters range between 50.8mm (data set 1) and 101.6mm (data set 2). Data set 3 represents a 

lateral with sections that have three different diameters (76.2mm, 50.8mm, and 38.1mm). The 

slope of the laterals vary from -0.04% for data set 5 to 0.5% for data set 2. Lateral lengths range 

between 300.0m (data sets 1 and 2) and 400.0m (data set 3). Residual outflow at the downstream 

end of the laterals vary between 0.0L/s (data sets 3 to 7) and 2.75L/s (data set 2). Total head at 

lateral inlet vary from 45.0m for data set 2 to 157.0m for data set 4. Lateral inlet elevations vary 

from 0.0m (data set 1) to 99.523m (data set 4). Two sprinkler models and nozzle sizes with 

significantly different head-discharge characteristics are used in these laterals.  

Data sets 1 to 5 are used in evaluating the consistency of the numerical solution of the 

model developed in the current study. These data sets are also used in comparing the output of 

the model, presented here, with EPANET and another model developed, by the same authors,  

based on manifold hydraulics. Data sets 4 to 7 are used in evaluation of the model with field 

measured. Data set 4 is used in sensitivity analysis. Note that for simplicity of presentation, 

where convenient the term lateral is used in place of the term data set in this chapter.  

 

5.2.  Consistency test of the numerical solution implemented in the lateral hydraulic  

  simulation model  

 

5.2.1. Test factors and criterion   

 The consistency of the numerical solution developed based on the gradient method is 

evaluated by comparing the intermediate and final outputs of the model with manual calculations. 

The goal is to evaluate if the different functions and component modules of the model are 

performing the functions they are designed for. Four hydraulic variables and parameters are 

selected for conducting these tests: the Darcy-Weisbach friction factor for each lateral pipe 

segment, f, the sprinkler discharges, Qs, lateral discharges, Q, and total nodal heads, H. Note that 

in the preceding sections of this document both lateral and sprinkler discharges are labeled as Q. 

However, in order to simplify discussion, in subsequent sections distinction is made between 

sprinkler discharge, Qs, and lateral discharge, Q. 

 

Friction factor, f: The model computes the friction factor, f, for each lateral pipe segment 

iteratively in accordance with the steps outlined in Appendix II. Given estimates of f and Q for a 

lateral pipe segment, computed by the model, along with the corresponding pipe diameter, D, 
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and absolute roughness, e, specified at the input; a revised estimate of the friction factor, f r, for 

the lateral pipe segment can be calculated manually with Eq. 77 
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Now one may observe that for the model computed f vector to be acceptable, the revised 

estimates, f r, calculated manually with Eq. 77 should be sufficiently close to the f array. 

Accordingly, the absolute difference between f r and f expressed as percentage of f r is used here 

as the criteria for evaluating the acceptability of the f array computed by the model. 

 

Sprinkler discharge, Qs: From Eqs. 16 and 17 it can be noted that the head differential across a 

sprinkler is expressed as a power function of the sprinkler discharge. The model computed head 

differential across sprinklers along with the coefficients and exponents of the sprinkler head-

discharge functions, specified as model inputs, can be used to manually calculate the discharges 

for each sprinkler along the lateral. For the sprinkler head and discharge vectors computed by the 

model to be considered acceptable, the manually computed and model predicted sprinkler 

discharges should be close. Accordingly, the differences between the model computed and 

manually calculated sprinkler discharges, expressed as percentages of the manually calculated 

discharges, are used to test the consistency of the numerical solution as regards sprinkler head 

and discharge computation.    

 

Lateral discharges, Q: The discharge vector computed by the numerical model can be checked 

manually if it meets junction node continuity requirements. Considering the downstream end 

node of the lateral, one can manually calculate an approximation of the discharge into the node 

(through the lateral segment immediately upstream) as the sum of the model computed local 

sprinkler discharge and the constant residual discharge at the downstream end of the lateral 

(specified as an input). Likewise, for the node immediately upstream, an approximation of the 

discharge into the node can be calculated manually as the sum of the model computed local 

sprinkler discharge and the discharge in the lateral segment immediately downstream of the node. 

This steps can then be repeated for all the junction nodes by moving sequentially upstream along 

the lateral. It can be observed that the absolute difference between the manually calculated and 
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model computed lateral discharges, upstream of each junction node, should be within the error 

tolerance set in the model for the residuals of continuity (which is 10-7). The difference between 

the manually computed lateral discharge upstream of a junction node and that obtained through 

numerical solution, expressed as percentage of the manually computed value, is used here in 

assessing the satisfaction of continuity requirements at junction nodes.    

 

Total head, H: The nodal heads, H, and the link discharges are computed as part of the 

numerical solution. Consistency tests relating to discharges have been discussed in the preceding 

paragraphs, hence the discussion here focuses on consistency test for the model computed H 

values. The total head at the upstream end of a lateral is constant and is specified at the input. 

The total head at the junction node just downstream of the inlet end of the lateral can be 

determined by subtracting the manually calculated friction head loss, in the upstream end lateral 

pipe segment, from the total head at the lateral inlet. The total head at each of the junction node 

downstream of the first can be calculated following the same approach. The manually calculated 

and the simulated total nodal heads must be sufficiently close. The difference between the 

simulated and manually calculated H, expressed as a percentage of the manually calculated H, is 

used there to assess the consistency of the numerical computation with respect to nodal heads.  

 

5.2.2. Results of consistency test  

Five data sets are used in the evaluation of the consistency of the numerical solution 

implemented in the model developed in the current study (data sets 1 to 5, Table 9). As noted 

above, the percent differences between the manually calculated and model computed values of 

each of the parameters and variables considered here (i.e., f, Qs, Q, and H), expressed as 

percentages of the manually calculated values, are used as quantitative measures of the 

consistency of the numerical solution. For each parameter and variable, the minimum, maximum, 

and average percent differences between the manually calculated and model computed values are 

presented in Figures 8a-8d. In order to produce sufficient spread between the data points, the 

ordinates of these graphs are in logarithmic scale. The minimum percent differences, for some of 

the data sets, are not shown in Figures 8a-8d. The reason is the minimum percent differences at 

those data sets are 0.0%, hence cannot be shown in a logarithmic scale graph.   

Considering all the data sets, the smallest percent difference between model computations 

and manual calculations are obtained for the friction factor, f (Figures 8a-8d). The maximum  
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    Figure 8.  Graphs showing percent differences between model computed and manually  

                    calculated hydraulic variables and parameters, expressed as percentage of the  

                    manually calculated values: (a) Percent difference in friction factor, f,  

                    (b) Percent difference in sprinkler discharge, Qs, (c) Percent diffeence in  

                    lateral discharge, Q, and (d) Percent difference in total nodal head, H 
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percent differences are in the order of 10-13% of the manually calculated f values (Figure 8a). The 

minimum percent differences, between the manually calculated and model computed f values,   

for all the data sets are about or less than 10-14% of the manually calculated values. The average 

percent differences are about half of the maximum differences. The largest difference between 

model and manual computations is obtained for the total head, H. Considering all the data sets, 

the maximum percent difference for H vary between about 10-8  and 10-5.4% and the minimum 

percent difference range from about 10-9.4 to 10-7% (Figure 8d).  The average percent difference 

vary between 10-8.2and 10-5.6%.   

The percent differences between manually calculated and model computed lateral and 

sprinkler discharges are closer to those obtained for H compared to those calculated for f.  The 

percent differences for the lateral discharges fall somewhere in between those calculated for f 

and H. Furthermore, a close examination of the Q data show that the absolute differences 

between the manually calculated and model computed values of Q, for all the data sets, meet the 

error tolerance criteria set internally in the model for the residuals of continuity. Considering all 

the parameters and variables, the percent differences between the manual calculations and model 

computations are overall in the order of 10-5.4% or less (Figures 8a-8d). These results show that  

the manually calculated and model computed parameters and variables are in good agreement, 

thus there is no evidence of internally inconsistency in the model computations.   

 

In the preceding discussion, variations can be noted in the percent differences calculated for the 

different parameters and variables (Figures 8a-8d).  It may not be possible to explain with 

certainty the source of these variations. However, it is likely that they are largely attributable to 

the differences in the levels of complexity with which each variable and parameter is computed 

in the model. In order to explain this observation, we will first explore the sources of the 

differences between model computed and manually calculated values of a parameter or variable.       

For the most part model computed values of variables and parameters, listed above, are 

the results of a series of complex intermediate mathematical operations. By contrast, the manual 

calculations are based on direct evaluation of simple explicit functions that are dependent on a 

few input data items and at most two model outputs. Evidently, the elemental formulas and 

equations used in both approaches are generally based on the same physical principles and the 

main source of error in both approaches is rounding-off error, associated with the representation 

of real numbers in computer hardware and software. However, there are significant differences, 
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between the manual calculations and the numerical computations performed by the model, in 

terms of the individual mathematical operations originating the errors and the evolution of errors 

in the course of a calculation/computation aimed at determining a parameter or a variable. These  

may largely account for the observed differences between the model computed and the manually 

calculated values of a parameter or variable.  

An inference that stems from the preceding discussion is that the variables and 

parameters computed in the model with relatively simple and direct procedures may lead to 

results that are relatively closer to the manual calculations. Whereas those variables and 

parameters computed, in the model, through a long series of intermediate calculations may be, in 

relative terms, appreciably different from those computed manually. One may note some 

evidence to this effect in the results presented in Figures 8a-8d. For instance for all the data sets, 

the friction factor, f, arrays, which are computed in the model with a relatively simple and direct 

procedure (that requires minimal inputs, only Q, from prior computations), are almost identical 

to those computed manually. Conversely, the Q, Qs, and H vectors, computed based on a 

complex set of iterative steps each requiring various matrix operations on several matrices 

(section 4), are the variables with the highest percent differences between manual calculations 

and model computations. The preceding may, at least partially, explain the observed variations 

between the percent differences computed for the different parameters and variables.   

 

5.3. Comparison of the model based on the gradient method with that based on  

 manifold hydraulics   

 

5.3.1.  Introductory discussion   

 The model developed in the current study treats the pressurized irrigation system lateral 

as a simple branched hydraulic network. The gradient method is used in the formulation and 

solution of the lateral hydraulic simulation problem. With the gradient method, the energy 

conservation equation for steady-state condition is applied across each link and the continuity 

equation is written for each junction node along a lateral. The equations are then coupled and the 

resultant system is solved iteratively (section 4). Alternatively, a lateral can be treated as a 

hydraulic manifold, in which case the continuity equation for each junction node and the energy 

conservation equations across the links attached to the node can be assembled into a much 

smaller system and solved iteratively (e.g., Zerihun et al., 2014). This approach requires the 

solution to be repeated sequentially for each set of link-node combination starting from one end 
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of the lateral and ending at the other end. Evidently, these two models are based on entirely 

different numerical methods. However, the fact that both approaches introduce minimal 

assumptions, in the formulation and solution of the steady-state lateral hydraulic problem, 

suggests that the outputs of the two models should be reasonably close. Thus a comparison of the 

two models can be used as an additional model evaluation criterion.  

The main differences in problem formulation between the gradient and manifold methods 

are in the formulation of the sprinkler head-discharge relationship and in the calculation of 

junction node local head losses. With the manifold method sprinkler discharge is related to 

pressure head differential across the sprinkler, but with the gradient method sprinkler discharge 

is related to the total head differential across the sprinkler, i.e., including the velocity head 

upstream of sprinkler. Typically, sprinkler manufacturers provide head-discharge characteristics 

of sprinklers in terms of sprinkler pressure heads and discharges. Hence, the use of parameters, 

derived based on such data, in the context of a model that solves the lateral hydraulic problem 

with the gradient method involves a level of approximation. However, the pressure head is 

generally much larger than the velocity head, hence these differences should not have 

appreciable effects on the results. Furthermore, with the manifold method local head losses at 

junction nodes can be taken into account. However, the junction node head losses cannot be 

explicitly considered within the framework of the gradient method. Hence, in order to conduct an 

accurate comparison between the two models, in all the data sets used in the comparison, 

junction node local head losses are not considered. In addition, the model developed based on 

manifold hydraulics does not have a capability to take into account residual discharges at the 

downstream end of the lateral. Hence, versions of data sets 1 and 2 used here for model 

comparison have zero residual discharges at the downstream ends of the laterals. 

Data sets 1 to 5 summarized in Table 9 are used in comparing the lateral hydraulic model, 

developed based on the gradient method, with that based on the manifold method. As noted in 

the preceding discussion, these data sets represent laterals that can be used in solid-set or set-

move sprinkler systems and cover a wide range of geometric, slope, and hydraulic conditions 

(section 5.1).  

 

5.3.2. Results of model comparison  

The nodal pressure heads and sprinkler discharges along each of the laterals computed 

with the two models are depicted in Figures 9a-9e. Although a close look at the data shows that 

pressure head rises slightly in the downstream reaches of laterals 4 and 5, the dominant trend in  
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Figure 9. Comparison of lateral pressure heads, h, and sprinkler discharges, Qs, computed with  

                the lateral hydraulic simulation model, developed based on the gradient method, and  

                that based on the manifold method: Data set 1, (b) Data set 2, (c) Data set 3, (d) Data  

                set 4, and (e) Data set 5 
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all of the laterals is that the computed lateral pressure heads and sprinkler discharges decrease 

monotonically with distance. For data set 3 the pressure head and sprinkler discharge profiles 

have three distinct segments each with different slope and curvature. Note that these segments 

overlap with the three lateral segments that have different diameters, hence the observed pattern 

of variation in the pressure head and discharge profiles along the lateral is a function of the 

diameter of the lateral pipe segments. Overall, the results show that the lateral pressure heads, h, 

and sprinkler discharges, Qs, computed with the gradient method closely matches those 

computed with the manifold method. 

In order to obtain a quantitative measure of the differences between the predictions of the 

gradient and manifold methods, the differences in the lateral pressure heads and sprinkler 

discharges computed with the two models, expressed as percentage of those computed with the 

gradient method, were calculated. The resultant maximum, minimum, and average percent 

differences in lateral pressure heads and sprinkler discharges are depicted in Figures 10a and 10b. 

The maximum percent difference between the pressure heads computed with the gradient and 

manifold methods, h, vary from 0.079% (data set 2) to 0.260% (data set 5) and the minimum 

range between 0.049 (data set 3) and 0.256% (data set 5), Figure 10a. The average percent 

difference in h varies between 0.077 for data sets 2 and 0.258 for data set 5. The maximum 

percent differences between the Qs computed with the two models, Qs, vary from 0.099 (data 

set 3) to 0.255% (data set 1) and the minimum percent difference range between 0.006 (data set 3) 

and 0.102% (data set 5), Figure 10b. The average percent difference in Qs range from 0.018 for 

data set 3 to 0.108% for data set 4. These results suggest that the outputs of the two models are 

essentially identical. The fact that the lateral pressure head and sprinkler discharges computed 

with the two models, which are based on entirely different numerical algorithms, are in good 

agreement suggests that the formulation and numerical solution of the lateral hydraulic 

simulation problem in both models is sound. Most importantly, these results lend support to the 

validity of the numerical algorithm implemented in the current model, which is by far the most 

complex of the two models compared here. 
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Figure 10. Graphs depicting comparisons of the lateral hydraulic simulation model, presented  

                here, with a model based on manifold hydraulics and with EPANET: (a) Percent  

                differences between lateral pressure heads computed with the gradient and manifold  

                models, h, (b) Percent differences between sprinkler discharges computed with the  

                gradient and manifold models, Qs, (c) Percent differences between lateral pressure  

                heads computed with the lateral hydraulic simulation model and EPANET, h, and  

                (d) Percent differences between sprinkler discharges computed with the lateral  

                hydraulic simulation model and EPANET, Qs 
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5.4. Comparison of the lateral hydraulic model with EPANET   

 

5.2.1. Introductory discussion   

EPANET is a computer program designed to simulate the hydraulic and water quality 

characteristics of pressurized hydraulic networks (Rossman, 2000). The lateral hydraulic model, 

developed here, and the hydraulic modeling functionality of EPANET are both based on a  

numerical solution of a system of (energy conservation and continuity) equations describing the 

steady-state flow processes in a pipeline network. Although EPANET is primarily developed for 

analyses of flow and constituent transport and transformation processes in large-scale water 

distribution networks with complex topologies, it can also be used to simulate the hydraulics of 

irrigation laterals with multiple outlets and pressure dependent discharges. Thus comparisons of 

the outputs of the lateral hydraulic model and EPANET can be used for further validation of the 

lateral hydraulic model.     

 Considering the formulation of the lateral hydraulic simulation problem, the main 

difference between the lateral hydraulic model and EPANET are the formulas used to calculate 

the friction factor of the Darcy-Weisbach equation. For the case in which flow is laminar 

(Re≤2000), both models use Eq. 5. For 4000<Re, the model developed here uses the Colebrook-

White equation, Eq. 6, to compute the friction factor iteratively and EPANET uses the Swamee 

and Jain equation (e.g., Rossman, 2000), which expresses the friction factor as an explicit 

function of pipe relative roughness, pipe diameter, and Re. In the interval 2000<Re≤4000, 

EPANET uses a cubic interpolation scheme to estimate the friction factor from the Moody 

Diagram (Dunlop, 1991). The current model, however, approximates the friction factor by 

simply extending Eq. 5 over the interval 2000<Re≤4000. The effects of these differences on the 

computed friction factors, f, friction head losses, hf, and lateral pressure heads, h, will be 

discussed in the next section. 

Data sets 1 to 5 presented in Table 9 are used in comparing the lateral hydraulic 

simulation model with EPANET. As noted in the preceding discussion, these data sets represent 

laterals that can be used in solid-set or set-move sprinkler systems and cover a wide range of 

geometric, slope, and hydraulic conditions (section 5.1). Both EPANET and the current model 

can simulate the hydraulics of laterals with residual outflow at the downstream end. Hence, data 

sets 1 and 2 used here has residual outflows as indicated in Table 9. Furthermore, EPANET 

treats emitters as properties of the pipe they are placed on. Hence in order to have a  more 

accurate comparison of the two models, versions of data sets 1 to 5 in which sprinklers are 
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placed directly on the lateral (i.e., the riser pipe height is set to zero) are used in comparing the 

two model. Note that the treatment of lateral residual discharges and riser pipes in the current 

analysis is different from that envisaged in the comparison of the lateral hydraulic model with 

that based on manifold hydraulics (section 5.3). Thus comparison of the results presented in the 

following sections with those in section 5.3 needs to take these differences into consideration.    

 

5.4.2. Results of model comparison  

The lateral pressure head and sprinkler discharge profiles, computed with the two models, 

are depicted in Figures 11a-11e. Although a close look at the data shows that pressure head rises 

slightly in the downstream reaches of laterals 4 and 5, the dominant trend in all of the laterals is 

that the computed pressure heads and sprinkler discharges decrease with distance from lateral 

inlet. Overall, the results show that lateral pressure head, h, and sprinkler discharge, Qs, 

computed with the lateral hydraulic model closely matches those computed with EPANET.  

In order to obtain a quantitative measure of the differences between the predictions of the 

lateral hydraulic model and EPANET, the differences in the lateral pressure heads and sprinkler 

discharges computed with the two models, expressed as percentage of those computed with the 

lateral hydraulic simulation model, were calculated. The resultant maximum, minimum, and 

average percent differences in lateral pressure heads and sprinkler discharges are depicted in 

Figures 10c and 10d. The maximum percent difference between the pressure heads computed 

with the current model and EPANET, h, vary from 0.075% (data sets 4 and 5) to 0.849% (data 

set 1) and the minimum ranges between 0.0% (data sets 2 and 4) and 0.025% (data sets 1), 

Figure 10c. The average percent differences in h vary between 0.026 for data sets 4 and 5 and 

0.414 for data set 1. The maximum percent differences between the Qs computed with the two 

models, Qs, vary from 0.015 (data sets 4 and 5) to 0.405% (data set 1) and the minimum percent 

difference ranges between 0.001% (data sets 2 to 5) and 0.014% (data set 1), Figure 10d. The 

average percent difference in Qs ranges from 0.011% (data sets 4 and 5) to 0.225% (data set 1). 

These results suggest that the outputs of the two models are essentially identical. The fact that 

the lateral pressure head and sprinkler discharges computed with the two models are very close 

lends further support to the validity of the numerical algorithm implemented in the lateral 

hydraulic simulation model. 

Note that the average and maximum percent differences in pressure head and sprinkler 

discharges for data set 1 differ appreciably from those calculated for the rest of the data sets 

(Figures 10c and 10d). A close look at the data shows that the friction head loss over the length  
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Figure 11. Comparison of lateral pressure heads, h, and sprinkler discharges, Qs, computed with  

                 the lateral hydraulic simulation model and EPANET: (a) Data set 1, (b) Data set 2, (c)  

     Data set 3,  (d) Data set 4, and (e) Data set 5 
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of lateral 1 is about 27.6m, which is more than six times as large as the second largest friction 

head loss, occurring in lateral 3. More significantly, however, it can be observed that the friction 

head loss in lateral 1 is of comparable scale as the lateral pressure head, which vary between 

about 22.4 and 47.5m. Evidently this result implies that the effect of friction head loss on lateral 

pressure head, and hence on sprinkler discharge, profiles is more significant in data set 1 than is 

the case in the other laterals. While this observation suggests that the relatively larger friction 

head loss in data set 1 may have an effect on the percent differences in pressure head, and hence 

sprinkler discharge, the actual mechanism by which the effect of the larger hf translates into the 

relatively larger percent differences in h and Qs is not clear to the authors.      

As noted above, considering the formulation of the lateral hydraulic simulation problem,  

the main difference between the two models compared here relates to the formulas used to 

calculate the Darcy-Weisbach friction factor. Evidently, the results summarized above suggest 

that the effect of these differences on lateral hydraulics is negligible. However, in the following 

sections estimates of f, and the resultant friction head loss, hf, obtained with the two approaches, 

are compared in order to directly evaluate the differences in the estimates of these parameters. 

Accordingly, the difference between a parameter estimate (e.g., estimate of a lateral pipe 

segment  f) computed with EPANET and the current model, expressed as percent of the 

parameter estimate computed with the current model, is used here for comparison purposes. 

 

For turbulent flow conditions (4000<Re)  

Turbulent flow occurs over 95.0% of the length of each of the laterals considered in the 

current analysis. Thus it is the dominant flow condition in these laterals and as such it is far more 

important, than both laminar and critical flow conditions, in terms of its significance in the 

overall lateral-wide comparison of estimates of f and hf obtained with the two models.  

Considering all the laterals, the minimum percent difference between estimates of (lateral 

pipe segment) friction factor, f, computed with EPANET and the lateral hydraulic model is 

0.58% and the corresponding minimum percent difference in hf is 0.61%. The maximum percent 

differences in f and hf are 1.78% and 1.65%, respectively. The overall average percent difference 

in f is 0.89%, compared to a percent difference of 0.82% in hf. Note that the percent differences 

calculated for both f and hf are sufficiently small for the estimates of f and hf, computed with the 

two models, to be considered in good agreement.  

A close look at the data shows that the minimum percent differences in f and hf , given 

above, correspond to the percent differences in f and hf calculated for the penultimate segment of 
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the lateral in data set 2. Furthermore, the maximum percent differences in f and hf, noted above, 

correspond to the percent differences in f and hf calculated for the penultimate segment of the 

lateral in data set 3. Now if all the parameters of a lateral pipe segment in the Darcy-Weisbach 

equation, except the friction factor, are kept constant, then the relationship between f and hf 

becomes linear. In which case, for a given lateral segment, the percent differences in f and, the 

corresponding, hf should be equal. In contrast to this observation, however, the result 

summarized above show that the minimum percent difference calculated for f is slightly at 

variance with that calculated for the corresponding hf and the same is true for the maximum 

percent differences calculated for f and hf. The question, therefore, is what is the reason for the 

observed slight variance between the percent differences in (lateral segment) f and hf, given 

above? 

The explanation for the preceding observation lies in the fact that the lateral pipe section 

discharge, Q, is not a given quantity but instead it is computed iteratively along with f and hf. 

Evidently both f and hf  are functions of the lateral discharge. However, the fact that lateral 

discharge itself is computed iteratively meant that Q in turn is a function of hf, and in effect f. 

The implication is that the differences in the formulas, used for computing f in EPANET and the 

lateral hydraulic simulation model, not only affect the values of f, and hence hf, but also has 

some effect on the corresponding Q. In addition, the numerical errors introduced in the 

computation of Q will not be exactly the same in the two models. Thus the minimum and 

maximum percent differences summarized above represent not only the effect of the alternative 

formulas on f, but also on Q and possibly the effect of differences in the numerical errors 

associated with the computation of Q. It then follows that the percent differences in f and hf, 

calculated for a given lateral segment, need not be equal. It should, nonetheless, be pointed out 

that a close look at the data shows that these effects are significant only in laterals where friction 

head loss is relatively large.           

 

For flow in the critical range (2000< Re ≤ 4000) 

For the laterals considered here, critical flow occurs in the downstream end lateral 

segment of data set 3 and in the penultimate segment of data sets 4 and 5. The percent 

differences in f, calculated for these lateral segments are 21.8% for data set 3 and 95.7% for data 

set 4. The percent differences in hf are 21.6% and 95.7% for data sets 3 and 4, respectively. As 

noted above, in this range of Re entirely different formulas are used to estimate the friction factor 

in EPANET and the lateral hydraulic simulation model and to a significant extent this difference 
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explains the rather large variance between the estimates of f, and hence hf, computed with the 

two models. Remarkably, however, the significant percent difference in the hf, computed with 

the two models, did not lead to perceptible differences in pressure heads and hence sprinkler 

discharges (Figures 10c and 10d and 11a-11e). Note that the reason for this is directly related to 

the magnitude of the friction head loss in the lateral segments where this flow regime occurs. A 

close look at the data shows that  flow rates in the distal segment of lateral 3 and the penultimate 

segment of lateral 4 are very small, about 0.08L/s and 0.203L/s, respectively. As a result the 

corresponding friction head losses are negligibly small, about 2mm and 0.5mm for data sets 3 

and 4, respectively. Therefore, in absolute terms, the differences between the friction head losses, 

computed with the two models, are too small to have perceptible effects on the corresponding 

pressure heads and hence their differences.  

Note that for each lateral segment the percent differences in hf are about the same as that 

calculated for f. As can be recalled from a discussion in the preceding section, this may possibly 

be related to the very small friction head loss in the lateral segments where this flow condition 

occurs.   

 

For laminar flow (Re≤2000) 

Laminar flow occurs in the downstream end segments of the laterals of data sets 4 and 5. 

The percent differences between the f values computed, with EPANET and the current model, 

are 1.8% and 3.2% for data sets 4 and 5, respectively. The percent differences between the 

friction head losses computed with the two models are as well 1.8% (for data set 4) and 3.2% 

(for data set 5). Given that the two models use exactly the same formula, Eq. 5, to calculate the 

friction factor in the laminar range, the f estimates within these Re range should in theory have 

shown the closest agreement compared to the other flow regimes, discussed in the preceding 

sections. However, the percent differences for the laminar range are greater than the maximum 

percent difference computed for the turbulent transition and fully turbulent rough zones 

(4000<Re). A possible explanation for this is that, for both data sets 4 and 5, the pipe segments in 

which laminar flow occurs are located at the distal end of the laterals and immediately 

downstream of the pipe segments where the flow regime is critical (2000<Re≤4000). Note that 

this is the pipe segment where the friction factor and friction head loss computed with the two 

models show the largest relative difference, as high as 95.7%. It is therefore conceivable that 

these differences may have contributed to the larger than expected percent difference in the 

computed f and hf in the pipe segment downstream (where flow is laminar).  
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Furthermore, the friction head loss, hf, computed for the downstream end segments of 

laterals 4 and 5 are in absolute terms very small: in the order of a tenth of a millimeter. As a 

result the friction head loss has no perceptible effect on the pressure heads and hence sprinkler 

discharges computed with the two models (Figures 10c-10d and 11a-11e). Note that for each 

lateral segment the percent differences in hf and f are equal. This may possibly be related to the 

very small friction head loss in the lateral segments where flow is laminar.   

 

5.5. Model evaluation with measured data 

Additional evaluation of the model developed in the current study is conducted based on 

comparison of its output with pressure head profiles measured along four laterals in a field-scale 

solid-set sprinkler system (Zerihun et al., 2011). Pertinent hydraulic, geometric, and slope data 

used in model comparison are summarized in Table 9 (data sets 4 to 7). Comparisons of the 

measured and simulated pressure heads along the laterals are shown in Figures 12a-12d. In order 

to provide a quantitative measure of the model prediction error, for each data set the differences 

between the simulated and measured pressure heads, expressed as a percentage of the 

measurements, were calculated.  

 

The minimum, maximum, and average percent differences between the simulated and measured 

pressure heads are shown in Figure 13. For data set 4, the percent differences in lateral pressure 

heads range between a minimum of 0.6 and a maximum of 3.7%, with an average of  

1.6%. The minimum, maximum, and average percent differences for data set 5 are 0.7, 3.6, and 

1.6%, respectively. For data set 6, the percent differences between measured and computed 

pressure heads vary from 0.2 to 3.8% and the average is 1.8%. For data set 7, the minimum, 

maximum, and average percent differences are 0.9, 1.8, and 1.4%, respectively.  

 

Considering all the data sets, the overall average percent difference between the measured and 

computed lateral pressure head profiles is 1.6%. The model prediction error for all the data sets is 

sufficiently low for the simulated pressured head profiles to be considered as reasonably close 

matches to the measured data.  



 74 

                       

(a)

Distance (m)

0 100 200 300 400

Distance (m)

0 100 200 300 400

P
re

ss
u

re
 h

e
a

d
 (

m
)

40

45

50

55

60

P
re

ss
u

re
 h

e
a

d
 (

m
)

40

45

50

55

60

(c)

Distance (m)

0 100 200 300 400

Distance (m)

0 100 200 300 400

P
re

ss
u

re
 h

e
a

d
 (

m
)

40

45

50

55

60

P
re

ss
u

re
 h

e
a

d
 (

m
)

40

45

50

55

60

(b)

Distance (m)

0 100 200 300 400

Distance (m)

0 100 200 300 400

40

45

50

55

60

P
re

ss
u

re
 h

e
a

d
 (

m
)

40

45

50

55

60

(d)

Distance (m)

0 100 200 300 400

Distance (m)

0 100 200 300 400

40

45

50

55

60

P
re

ss
u

re
 h

e
a

d
 (

m
)

40

45

50

55

60

Simulated

Measured

     

            Figure 12.  Comparison of lateral pressure head computed with the lateral hydraulic simulation model, presented here, and  

                               measured data: (a) Data set 4, (b) Data set 5,  (c) Data set 6, and (d) Data set 7 
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5.6. Sensitivity analysis  

 

5.6.1. Introductory discussion   

Sensitivity analysis is conducted in order to further evaluate spatial patterns of model 

predicted lateral hydraulic characteristics under a range of conditions. A one-dimensional 

analysis is used to evaluate the sensitivity of lateral pressure head and sprinkler discharge 

profiles to variations in lateral slope, diameter, and pipe absolute roughness over reasonably 

large intervals. A one-dimensional sensitivity analysis consists of a procedure in which at any 

one time only the lateral slope, or diameter, or absolute roughness is varied within a preset range, 

while all other variables and parameters are kept constant at their field measured values. The 

analysis is based on data set 4, a field measured data presented in Table 9. It is assumed here that 

lateral slope, diameter, and pipe absolute roughness are constant over the length of the lateral.  

Note that instead of the head differential across a sprinkler (i.e., the difference between 

total residual head upstream of a sprinkler and sprinkler elevation, H-Z), which is directly 

Figure 13. Percent differences between field measured lateral pressure head profiles  

                 and those computed with the lateral hydraulic simulation model, h,  

                 expressed as a percentage of measurements                                                                                 
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proportional to sprinkler discharge, it is the lateral pressure head, h, along with sprinkler 

discharge that is used in the current analyses. Lateral pressure head is used, because it is less of 

an abstract quantity, compared to head differential across a sprinkler, and it is more amenable to 

theoretical analyses that help verify some of the observations that would be deduced based on 

simulated data. However, it is important to note that since h is only an approximation to H-Z, the 

simulated location of the minimum pressure head and the minimum sprinkler discharge along a 

lateral may not necessarily be the same, but should be close. 

 

5.6.2. Lateral slope   

Hydraulic simulations were conducted, with the gradient model, to evaluate the 

sensitivity of lateral pressure head profile and sprinkler discharges to variations in lateral slope. 

Five different lateral slopes ranging between -0.5% to 0.25% were used in the analyses. 

Simulated lateral pressure head and sprinkler discharge profiles, expressed as a function of 

lateral slopes, are depicted in Figures 14a and 14b, respectively.   

 

Sensitivity of pressure head profile to lateral slope  

 Considering the upper limit of the slope range (0.25%), it can be observed that the 

pressure head profile (Figure 14a) decreases monotonically with distance from a maximum 

pressure head of 57.44m at the inlet to a minimum of 54.7m at the distal end of the lateral. The 

same general spatial pattern holds for the pressure head profile along the lateral with 0.0% slope 

as well.  

By contrast, the laterals with negative slopes have a distinct trend in which pressure head 

decreases with distance from the lateral inlet, reaches a minimum somewhere along the lateral, 

and then begins to increase, rising to a local peak at the distal end of the lateral. For instance, for  

the lateral with a slope of -0.06%, pressure head decreases monotonically with distance from a 

maximum value of 57.44m, at the inlet, to a minimum of about 55.82m at a distance of 310.8m 

from the inlet. It then increases slightly to about 55.84m at the downstream end of the later 

(Figure 14a). A similar trend can be noted for the lateral with -0.25% and -0.5% slope. However, 

as the lateral slope is varied from -0.06, to -0.25, and then to -0.5%, the point at which the 

minimum pressure head occurs moves further upstream along the lateral, the corresponding 

minimum pressure head increases, and the magnitude of the pressure head rise in the lateral 

segment downstream, of the minimum point, becomes larger. For example, for the lateral 
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Figure 14. Sensitivity of (a) Lateral pressure head to lateral slope, (b) Sprinkler discharge to  

                 lateral slope, (c) Lateral pressure head to diameter, (d) Sprinkler discharge to  

                 diameter, (e) Lateral pressure head to pipe absolute roughness, and (f) Sprinkler  

                 discharge to pipe absolute roughness 



 78 

with -0.5% slope, the minimum pressure head is 56.76m, exceeding the minimum pressure head 

associated with -0.06% slope by about 0.94m. Furthermore, the minimum pressure for this lateral 

occurs at a distance of about 155.4m from the inlet, compared to a distance of 310.8m from inlet 

for the lateral with -0.06 slope. In addition, for the lateral with -0.5% slope, the pressure head 

profile increases from a minimum of 56.76m to a local peak of about 57.46m at the distal end of 

the lateral, which represents an increment of 0.7m. By contrast, for the lateral with -0.06% slope, 

the pressure head profile in the downstream reach of the lateral rose by a mere 2cm from the 

corresponding minimum of 55.82m.    

 

The validity of the broad spatial trends of the lateral pressure head profiles, described above, can 

be evaluated by analyzing the functional relationship between lateral pressure head profile, h(x), 

friction head loss, hf(x), velocity head, Vh(x), elevation profile, Z(x), and total head at the lateral 

inlet, H0, where x is distance from inlet. Such analysis is presented in Appendix VII. Overall, the 

analysis shows that the general spatial behavior of h(x) (i.e., whether it is increasing or 

decreasing over the entire length of the lateral or it is increasing over a segment of the lateral and 

is decreasing over another) depends on the magnitude of the lateral slope, S0, relative to that of 

the friction slope, hf(x). A detailed discussion on this is presented in Appendix VII, however, the 

key results are summarized here:  

 

(i)   If 0 S0 , then h(x) is a decreasing function of distance from inlet over the entire length of the  

       lateral;  

(ii)  If S0<0, but hf(0)  |S0|, then h(x) is an increasing function of distance over the entire length  

       of the lateral;  

(iii) If S0<0 and |S0| < hf(0), but |S0| is sufficiently large to exceed hf(x) at some point along the  

       lateral, then h(x) decreases with distance from inlet, reaches a minimum at some point along  

       a lateral, where  hf′(x) = |S0|, and then increases to a local peak at the distal end of the lateral;   

       and  

(iv) If S0<0 and |S0| < hf(x) over the entire length of the lateral or |S0| = hf(L), (where L is the  

       lateral length), then h(x) is a decreasing function of distance, from the inlet, over the entire  

       length of the lateral;  

 

As can be noted from Appendix VII, for scenarios i and iv, above, the maximum and minimum 

pressure heads occur at the upstream and downstream ends of the lateral, respectively. For 
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scenario ii, the minimum and maximum pressure heads are located at the inlet and distal ends of 

the lateral, respectively. For scenario iii, however, the minimum pressure head occurs at a point 

along the lateral, where the friction slope is equal to the lateral slope. The maximum pressure 

head can occur at the inlet or distal end of the lateral depending on the magnitude of S0 relative 

to that of hf(x).      

 

Note that the spatial trends of the lateral pressure head profiles presented in Figure 14a for all the 

five lateral slopes are consistent with the inferences deduced in Appendix VII, based on 

hydraulic theory, and summarized in scenarios i-iv, above. For the laterals with +0.25 and 0.0% 

slopes, the spatial patterns of the simulated pressure head profiles with respect to distance and 

the location of the maximum and minimum pressure heads along the lateral are consistent with 

the description given in scenario i above for laterals with S0  0. Likewise, for the laterals with 

slopes ranging between -0.06 and -0.5% (i.e., S0 < 0), the spatial pattern of the simulated 

pressure head profiles fall into the category described in scenario iii above, where  |S0| < hf ′(0), 

but that |S0| is sufficiently large to exceed hf ′(x) at some point along the lateral. 

 

Sensitivity of sprinkler discharge profile to lateral slope  

 The sensitivity of sprinkler discharge profile to lateral slopes is depicted in Figure 14b. 

Considering the upper bound of the slope range (0.25), it can be observed that the sprinkler 

discharge monotonically decreases from a maximum of 0.1026L/s at the lateral inlet to a 

minimum of about 0.1L/s at the distal end of the lateral. The lateral with 0.0% slope has the same 

general spatial pattern as the lateral with 0.25% slope. By contrast, the sprinkler discharge 

profiles of the laterals with negative slopes have two segments with distinctly different spatial 

patterns: an upstream section in which sprinkler discharge decreases monotonically with distance 

from a maximum value at the upstream end sprinkler to a minimum somewhere along the lateral, 

followed by a downstream segment in which discharge profile increases with distance, reaching 

a local peak at the distal end of the lateral. For example, for the lateral with a slope of  

-0.5%, the sprinkler discharge decreases from a maximum of 0.1026L/s, for the upstream end 

sprinkler, to a minimum of about 0.1020L/s at about 164.5m from the inlet. The sprinkler 

discharge then increases with distance to about 0.1027L/s at the distal end of the lateral.  

Overall, it can be observed from Figures 14a and 14b that the pattern of variation of the 

sprinkler discharge profiles, as a function of lateral slope, is about the same as that observed in 



 80 

relation to the corresponding lateral pressure head profiles. Note that the similarity in the spatial 

patterns of the lateral pressure head and sprinkler discharge profiles can be explained by the fact 

that sprinkler discharges are closely related to local lateral pressure heads.      

 

5.6.3. Lateral diameter  

The sensitivity of lateral pressure head profile and sprinkler discharges to variations in 

lateral diameter was evaluated for five standard pipe diameters ranging between 38.1 and 

88.9mm. The resultant pressure head and sprinkler discharge profiles along the lateral are 

depicted in Figures 14c and 14d, respectively.  

 

Sensitivity of lateral pressure head to diameter   

Figure 14c depicts the sensitivity of lateral pressure heads to variations in lateral diameter. 

Considering the lateral with the smallest diameter (38.1mm), it can be observed that pressure 

head vary monotonically with distance from a maximum of 57.1m at the inlet to a minimum of 

25.1m at the distal end of the lateral, which represents a decrement of 32.0m over the length of 

the lateral. By comparison, for the largest diameter lateral considered here (88.9mm), pressure 

head decreases from a maximum of 57.45m at the lateral inlet to a minimum of 56.79m at a 

distance of about 274.2m from the inlet, representing a decrement of only 0.66m. Pressure head 

then increases slightly, reaching 56.83m at the distal end of the lateral.  

A close look at the simulated data shows that the relatively large pressure loss in small 

diameter laterals is directly related to the relationship between pipe diameter and friction head 

loss. For instance, the friction head loss in a lateral with 38.1mm diameter is 32.6m, which 

exceeds the elevation differential along the lateral, of 0.22m, by an order of magnitude and a half 

(note that elevation differential is the other important factor that affects pressure head profile).  

By comparison, for the largest diameter lateral considered here, 88.9mm, the friction head loss is 

0.87m, which is only about four times as large as the drop in elevation over the length of the 

lateral. Evidently these results and physical reasoning suggest that friction head loss is the 

dominant factor in determining the pressure head profile in smaller diameter laterals (38.1 and 

50.8mm), and as such it is the source of the relatively large pressure head loss observed in these 

laterals. Further examination of the data shows that the pressure head loss, along a lateral, 

decreases rapidly with increases in pipe diameter from 38.1 to 88.9mm. Given that friction head 

loss is inversely proportional to a power function of pipe diameter, it can be readily observed that 

these results are consistent with hydraulic theory.   
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We will now briefly examine the interactive effects of lateral diameter and slope on lateral 

pressure head. For the smallest diameter lateral considered here, 38.1mm, the simulated data 

shows that the pressure head profiles monotonically decrease with distance from a maximum at 

the inlet to a minimum pressure head at the downstream end of the lateral (Figure 14c). A close 

look at the data shows that the friction slope at the downstream end of the lateral, hf(L), equals 

|S0|, but hf(x) exceeds |S0| for x<L, leading to a pressure head profile that is monotonically 

decreasing with distance from inlet over the entire length of the lateral. Note that the spatial 

pattern of the pressure head profile for these laterals is one described by scenario IId (Appendix 

VII).   

By contrast, for each of the laterals with diameter ranging between 50.8 and 88.9mm, the 

pressure head profile decreases monotonically with distance from a maximum at the inlet to a 

minimum value located somewhere along the lateral and then increases reaching a local peak at 

the distal end of the lateral. Overall, the simulated data shows that as lateral diameter increases 

from 50.8, to 63.5, 76.2, and then to 88.9mm, the minimum pressure head as well increases and 

the point at which the minimum pressure head occurs moves upstream along the lateral. 

Evidently the spatial patterns of the pressure head profiles for these laterals fall into the category 

described by scenario IIb and Eq. VII.11 (Appendix VII).  

Note that the category for the spatial patterns of lateral pressure head profiles transitioned 

from scenario IId (for the lateral with a diameter of 38.1mm) to scenario IIb (for diameters 

ranging from 50.8 to 88.9mm). This implies that the significance of the effect of lateral slope on 

pressure head profile, relative to that of friction, increases with lateral diameter. Given that 

friction head loss decreases exponentially with increases in lateral diameter, the relatively rapid 

decrease in the significance of its effect on pressure head (compared to that of lateral slope) with 

increases in lateral diameter is consistent with hydraulic theory.    

   

Sensitivity of sprinkler discharge profile to diameter   

 The sensitivity of the sprinkler discharge profiles to variations in lateral diameter are 

shown in Figure 14d. Considering the lateral with the smallest diameter, 38.1mm, the simulated 

data shows that sprinkler discharge decreases monotonically with distance from a maximum of 

about 0.1003L/s at the upstream end sprinkler to a minimum of 0.0663L/s at the distal end of the 

lateral. By comparison, for the largest diameter considered in the current analyses (88.9mm), the 

sprinkler discharge profile has an upstream segment that decreases with distance from a 
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maximum of about 0.1026L/s at the upstream end sprinkler, reaching a minimum of 0.1021L/s at 

a distance of about 274.2m from the inlet and then increase with distance. Nonetheless, the 

increase in discharge over the downstream reach of the lateral is practically negligible, i.e., less 

than the significant digit considered here. The simulated data, for lateral diameters in the range 

50.8 and 76.2mm, show that the spatial trends of the corresponding sprinkler discharge profiles 

follow about the same overall pattern as that obtained for 88.9mm. Furthermore, the data also 

show that as lateral diameter increases, the minimum sprinkler discharge as well increases and 

the point of minimum sprinkler discharge moves upstream along the lateral.  

Evidently the pattern of variation of sprinkler discharge profiles, as a function of lateral 

diameters, are about the same as that observed in relation to the corresponding pressure head 

profiles (Figure 14c). These similarities in the spatial patterns of the lateral pressure head and 

sprinkler discharge profiles can be explained by the fact that sprinkler discharges are closely 

related to local lateral pressure heads. 

 

5.6.4. Lateral pipe absolute roughness 

The sensitivity of lateral pressure head profile and sprinkler discharges to variations in 

lateral pipe absolute roughness was evaluated for roughness values ranging between 0.127mm 

(recommended for aluminum pipes; Keller and Bliesner, 1990) and 0.762mm. The corresponding 

lateral pressure head and sprinkler discharge profiles are summarized in Figures 14e and 14f, 

respectively.      

 

Sensitivity of lateral pressure head profile to pipe absolute roughness 

Simulated lateral pressure head profiles as a function of pipe absolute roughness are 

depicted in Figure 14e. For a roughness value of 0.127mm, lateral pressure head decreases from 

a maximum of 57.44m at the inlet end to a minimum of about 55.82m at a distance of 310.8m 

from inlet and then, because of slope effects, pressure head rises slightly to 55.84m at the distal 

end of the lateral. As the pipe absolute roughness is increased to 0.254, then to 0.508, and 

0.762mm the maximum pressure head at the lateral inlet remains the same as that obtained for 

absolute roughness of 0.127mm. However, the pressure head profile and the minimum pressure 

head decline slightly with increases in pipe absolute roughness. For instance for the maximum 

pipe absolute roughness considered here (0.762mm), the minimum pressure head is about 

54.91m, relative to the 55.82m associated with the lateral pipe roughness of 0.127mm. The 

minimum pressure head point, for a roughness value of 0.762mm, moved slightly downstream to 
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319.9m, compared to the 310.8m for absolute roughness of 0.127mm. In the lateral section 

between 319.9 and 374.4m, the pressure head profile (for pipe roughness of 0.762mm) rose 

marginally with distance reaching a local peak of 54.93m at the downstream end of the lateral. A 

comparable rise in pressure head can be noted over the downstream reach of the lateral with 

absolute roughness of 0.127mm.      

Outputs of the hydraulic simulation summarized above show that increases in pipe 

absolute roughness led to decreases in the lateral pressure head profile and to a marginal increase    

in the distance of the minimum pressure head point from lateral inlet. Evidently, pipe absolute 

roughness affects lateral pressure head profile through its effect on friction head loss. In the 

analysis presented here it is assumed that all (lateral hydraulic, geometric, and slope) 

variables/parameters are constant, except pipe absolute roughness. However, lateral discharge is 

not an input to the model and it varies with pipe absolute roughness. In fact a close look at the  

energy conservation and the Darcy-Weisbach friction head loss equations suggest that the change 

in friction head loss resulting from an increase in pipe absolute roughness represents the net 

effect of a rather complex interaction between pipe absolute roughness and lateral discharge. 

Note that, at least in theory, this may complicate any analysis regarding the relationship between 

pipe roughness and friction head loss, and hence pressure head. Nonetheless, the simulated 

output shows that, for the data considered here lateral discharge is nearly insensitive to pipe 

absolute roughness (may note related discussion in subsequent section). Thus we assume here 

that the effect of variations in lateral discharge (due to changes in pipe absolute roughness) on 

friction head loss is practically negligible.      

Under the hydraulic scenario considered here lateral diameter is assumed constant, hence 

increases in pipe absolute roughness would lead to increases in relative roughness. Given that 

lateral discharges are nearly constant, it can then be observed from Moody Diagram that 

increases in lateral pipe relative roughness will result in increases in the friction factor, f, and 

hence to increases in friction head loss, hf. Based on the equations presented in Appendix VII, it 

is therefore a simple matter to show that increases in hf (due to increases in pipe absolute 

roughness) would lead to decreases in lateral pressure head profile. Furthermore, under the 

scenario considered here, it can readily be shown that increases in hf imply increases in friction 

slope, hf′, as well. As can be noted from the discussion in Appendix VII, for a lateral with a 

constant slope this should result in pressure head profiles in which the minimum pressure head 

point shift downstream along the lateral.  
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The model computed friction head loss and friction slope data support the hydraulic 

reasoning outlined above to explain the observed spatial pattern of the simulated pressure head 

profile. The lateral friction head loss for pipe absolute roughness of 0.762mm is 2.77m, which is 

significantly greater than an hf of 1.86m associated with pipe roughness of 0.127mm. Given that 

the lateral slope is constant, it can be shown based on the results presented in Appendix VII that 

the larger friction head loss associated with an absolute roughness of 0.762mm will lead to a 

lower pressure head profile compared to that associated with roughness of 0.127mm.  

Furthermore, the simulated data show that hf′ for pipe absolute roughness of 0.762 and 

0.127mm decreases with distance starting from maximum values of 0.021 and 0.014, 

respectively, at the inlet end. Note that this is consistent with the general spatial behavior of 

lateral friction slope (Appendix VII). The data also show that, except for the distal lateral 

segment, the hf′ curve for absolute roughness of 0.762mm is above the friction slope curve for 

pipe roughness of 0.127mm. However, the hf′ function for roughness of 0.762mm also decreases 

at a faster pace, with distance from lateral inlet, compared to the hf′ curve associated with 

roughness value of 0.127mm, but the rate of decrease is not sufficiently large for the hf′ curve to 

fall below the lateral slope upstream of the 319.9m point. In summary, the simulated data shows 

that an increase in pipe absolute roughness led to increases in hf′. Increases in hf′, in a lateral with 

a constant slope, in turn resulted in an increase in the distance of the minimum pressure head 

point from the lateral inlet. Note that these results are consistent with the explanation provided 

above for the observed downstream shift in minimum pressure head point along the lateral. 

  

Sensitivity of sprinkler discharge profile to pipe absolute roughness 

The sensitivity of sprinkler discharge profiles to lateral pipe absolute roughness is 

depicted in Figure 14f. Considering the lower limit of the pipe absolute roughness range 

(0.127mm), the sprinkler discharge decreases monotonically with distance from a maximum of 

about 0.1026L/s at the upstream end sprinkler to a minimum of 0.1011L/s at a distance of about 

310.8m. Sprinkler discharge then rises slightly to about 0.1012L/s at the distal end of the lateral. 

As the pipe absolute roughness is increased to 0.254, then to 0.508, and 0.762mm the broad 

spatial pattern of the sprinkler discharge profile, along a lateral, remains the same as that 

obtained for pipe absolute roughness of 0.127mm (Figure 14f). However, the maximum  

sprinkler discharge decreases marginally from about 0.1026L/s to 0.1025L/s, as absolute 

roughness is increased from 0.127mm to 0.762mm. The minimum discharge decreases slightly 

from 0.1011L/s for absolute roughness of 0.127mm to 0.1003L/s for absolute roughness of 



 85 

0.762mm and the point of minimum discharge, along the lateral, moves slightly downstream 

from 310.8m for absolute roughness of 0.127mm to 319.9m for a lateral with roughness value 

0.726mm. Overall, a 500% increase in pipe absolute roughness led only to a maximum of about 

0.8% decrease in the minimum lateral discharge. Thus for the scenario considered here, in 

practical terms lateral discharge is nearly insensitive to variations in pipe absolute roughness.    

         The spatial patterns of sprinkler discharge profiles along laterals expressed as a function 

pipe absolute roughness are about the same as those obtained for the lateral pressure head 

profiles (Figure 14f). Considering that sprinkler discharges are closely related to local lateral 

pressure heads, the similarity between the two sets of curves is consistent with intuitive hydraulic 

reasoning.  

 

6.  Summary and Conclusion 

 

A hydraulic simulation model is developed for an irrigation lateral operated under steady-state 

condition. The formulation and numerical solution of the irrigation lateral hydraulic simulation 

problem, presented here, is based on an adaptation of the gradient method, developed originally  

for the simulation of pipeline networks with complex topologies. For computational purpose, an 

irrigation lateral is described here as a branched hydraulic network comprised of a series of 

interconnected links, each delimited by nodes. Lateral pipe sections and riser-emitter ensembles 

(or emitters) are considered as hydraulic links. The network nodes consist of junction nodes with 

unknown heads (marking the intersections of hydraulic links) and fixed head nodes, comprised 

of boundary nodes with externally imposed constant heads. Pipe appurtunances such as valves 

and fittings and other feastures that introduce local head losses are treated as properties of the 

lateral pipe segment they are placed on. Inline devices that add energy into or remove energy 

from the flow are not considered. The hydraulic characteristics of emitters can vary along the 

lateral. Furthermore, lateral pipe segment diameter, length, spatial orientation, slope, and 

hydraulic resistance characteristics can differ along a lateral. In addition, a couple of different 

pipe appurtenances can be fitted into any of the lateral pipe segments. However, a single set of 

pipe diameter, slope, and hydraulic resistance parameters needs to be used to characterize a 

lateral pipe segment. 

The energy balance and continuity equations for one-dimensional steady incompressible 

flow are used to describe the hydraulics of this system. The energy balance equation is written 

across each hydraulic link and the continuity equation is formulated for each junction node. 
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These equations are assembled to form a nonlinear system, which is then partitioned for block 

matrix representation. This formulation leads to a system that is amenable to detailed yet 

compact presentation and possibly to an efficient numerical solution. The resultant system of 

equations are solved for the variables (i.e., the link discharge, Q, and nodal head, H, vectors) 

iteratively with the Newton-Raphson method.  

 

Evaluation of the lateral hydraulic simulation model, developed in the study reported here, is 

conducted at different levels. First the consistency of the numerical solution implemented in the 

model was tested by comparing intermediate and final outputs of the model with manual 

calculations. Then the outputs of the model are compared with the outputs of EPANET and of 

another model developed, by the same authors, based on manifold hydraulics. The model is 

further evaluated based on comparisons of its outputs with field measured data. Finally, 

sensitivity analysis is conducted in order to evaluate the spatial patterns of model predicted 

lateral hydraulic characteristics under a range of conditions. Seven data sets, consisting of both 

hypothetical and field measured data, covering a wide range of lateral hydraulic, geometric, and 

slope conditions are used in model evaluation.  

 The goal of the numerical solution consistency test is to evaluate if the different functions 

and component modules of the model are performing the functions they are designed for. Four 

hydraulic variables and parameters are selected for conducting these tests: the Darcy-Weisbach 

friction factor for each pipe segment of a lateral, the sprinkler discharges, lateral discharges, and 

nodal heads. The difference between model computed and manually calculated values of the 

respective parameters or variables, expressed as percent of their manually calculated values, is 

used as a metric to assess the consistency of the numerical solution. Five data sets were used in 

this evaluation. Considering all the data sets, the percent differences between the manually 

calculated and model computed variables or parameters are in the order of 10-5.4% or less. These 

results show that the manually calculated and model computed parameters and variables are in 

good agreement, thus model computations can be considered internally consistent.   

   Additional model evaluation is conducted based on comparisons of pressure head and 

sprinkler discharge profiles, along a lateral, computed with the current model and with another 

model, developed based on manifold hydraulics. Five data sets were used in comparing the 

models. Considering all the data sets, the maximum and average percent differences between the 

lateral pressure head profiles computed with the two models are 0.260% and 0.143%, 

respectively. The overall maximum and average percent differences between the sprinkler 
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discharges computed with the two models are 0.255% and 0.071%, respectively. These results 

suggest that the outputs of the gradient and manifold models are essentially identical. The fact 

that the lateral pressure head and sprinkler discharges computed with the two models, which are 

based on entirely different numerical algorithms, are in good agreement suggests that the 

formulation and numerical solution of the lateral hydraulic simulation problem in both models is 

sound. Most importantly, these results lend support to the validity of the numerical algorithm 

implemented in the current model, which is by far the most complex of the two models 

compared here.  

   Furthermore, lateral pressure head and sprinkler discharge profiles simulated with the 

lateral hydraulic model and EPANET were compared. Five data sets were used in comparing the 

models. Considering all the data sets, the maximum and average percent differences between the 

lateral pressure head profiles computed with the two models are 0.849% and 0.114%, 

respectively. The overall maximum and average percent differences between the sprinkler 

discharges computed with the two models are 0.405% and 0.059%, respectively. These results 

suggest that the pressure head and sprinkler discharges simulated with the two models are in 

close agreement. 

   Further evaluation of the model, developed in the current study, is conducted based on  

comparisons of model computed and measured pressure head profiles. Measured pressure head 

data along four laterals, of a field-scale solid-set sprinkler system, is used in this evaluation. 

Considering all the data sets, the percent differences between the simulated and measured 

pressure heads vary between a minimum of 0.2% and a maximum of 3.8% and the overall 

average percent difference is 1.6%. The model prediction error is sufficiently low for the 

simulated lateral pressure head profiles to be considered a close match to the measured data.  

 Sensitivity analysis of lateral pressure head and sprinkler discharge profiles to variations 

in lateral slope, lateral diameter, and absolute roughness is conducted based on a field measured 

lateral data set. Five lateral slopes ranging from -0.5 to 0.25%, five standard lateral diameters 

varying between 38.1 and 88.9mm, and four pipe absolute roughness values ranging from 0.127 

to 0.762mm are used in the analysis. The broad spatial patterns of the simulated pressure head 

profiles are consistent with hydraulic theory.                        

 

 

 

 



 88 

Application of the numerical algorithm developed here is limited to the hydraulic simulation of 

irrigation laterals. However, following the approach proposed by Zerihun et al. (2014) and 

Zerihun and Sanchez (2014), the numerical solution developed here can be readily integrated 

into a field-scale pressurized irrigation system hydraulic characterization and simulation model.  
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Appendix I. Derivation of the expressions for the elements of the inverse of the Jacobian  

                    matrix  

In this section expressions for the elements of the inverse of the Jacobian matrix are 

derived. The form of the Jacobian matrix evaluated based on the estimate of the link discharges 

at the mth iteration,  m (Eq. 34), is  
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With the view of keeping the derivation simple, define a matrix, , such that 
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From Eq. 36, we define a matrix , such that   = (m)-1, which is given as 

  

     )3.I(
2221

1211








=

ββ

ββ
β  

 

Expressions for the elements of , in terms of the elements of  m (Eq. I.1), are computed in the 

following steps (Lipschutz, 1991): 

1. Form an augmented 24 matrix,  , of the form  

  

( ) )4.I(|m
IθΠ =  

 

where I is identity matrix; 

2. Reduce   to echelon form, re. A matrix in echelon form is one in which each leading 

nonzero element is to the right of the leading nonzero entry in the preceding row and all zero 

rows, if any, are at the bottom of the matrix. If the row reduction produces a zero row, matrix 

 m is singular and hence not invertible.    

3. Reduce re into row canonical form, rc.  

 

      ( ) )5.I(|rc ΛIΠ =
 

 

An echelon matrix is considered to be in row canonical form if each leading nonzero element is 1 

(note that I should be used in place of 1 for block matrices) and each leading nonzero entry is the 

only nonzero element in its column.   
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4. Set ( m)-1 =  , thus   = ;   

  

Now, we will follow these steps to compute the inverse of the Jacobian matrix.  

 

Step 1: Form the augmented matrix, : 
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Step 2: Reduce matrix   to its echelon form, re, through the following row operations 

 (2a) Replace R1 by mR1 (where R1 is row 1): 
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(2b) Replace R2 by 21R1-R2 (where R2 is row 2): 
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Step 3: Reduce re into row canonical form, rc, through the following row operations: 

             (3a) Replace R2 by the product (21m12)
-1R2 
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  (3b) Replace R1 by the expression R1 - m12R2  
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          Note that the matrix in Eq. I.10 is of the same form as that of Eq. I.5. Thus,  
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Step 4: ( m)-1 =  , thus   = : Comparing Eqs. I.11 and I.3, it follows that  
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Appendix II. Algorithm for the iterative computation of the Darcy-Weisbach friction factor  

The following procedure is used to compute the friction factor for the ith link based on 

the link discharge at the mth iteration, fi
m. Note that to simplify the discussion, in subsequent 

presentation the friction factor is referenced simply as f, without the subscript and superscript.  

 

First, write the Colebrook-White equation, Eq. 6, in a form amenable to iterative solution   
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 Given the pipe segment absolute roughness, diameter, discharge, and a current estimate of f,  

f c, the function F(f c) represents the residual associated with the error in the current estimate of f. 

A revised estimate of the friction factor, f r, is computed as a function of the current estimate f,    

f c, with the Newton iterative relationship  
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In Eq. II.2, F′(f c) is the derivative of F(f) with respect to f evaluated at f = f c and is given as 
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The iterative steps for computing f are depicted in the flow chart in Figure II.1 and are 

summarized as follows:  

 1. If Re≤4000 proceed to step 2; If not proceed to step 3;  

2. Calculate f with Eq. 5; end computation and return to the sub-process for computing the 11   

      matrix, Appendix III;  

3.   Set j = 0 (where j is the iteration index) and proceed to step 4; 

4.   Initialize f: 

      4a. If m = 0 (where m is the gradient iteration index), then set  f c to the value of f for the  

           corresponding fully turbulent zone (Eq. II.4) and proceed to step 5; If 0<m then proceed  

           to step 4b 
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4b.  Set f c= f (m-1) (where f (m-1) is the value of f at the (m-1)th gradient iteration) and proceed 

             to step 5;  

5.   Evaluate F(f c) with Eq. II.1 and proceed to step 6; 

6.   Evaluate F( f c) with Eq. II.3 and proceed to step 7;   

7.   Calculate a revised estimate of f, f r, with Eq. II.2 and proceed to step 8; 

8.  Test for convergence: proceed to step 8a:  

      8a. If |f r-f c|  10-8 proceed to step 10; If not proceed to step 8b; 

      8b. Set  j = j+1 and f c = f  r and proceed to step 9;  

9.   If  j30, then proceed to step 5; if 30<j, iteration failed to converge, end computation; 

10. The iteration has converged, set f = f r ; end computation and return to the subprocess for  

       computing the 11 matrix;  
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j = 0

 f 
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0<m

 f 
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Iterative computation of
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 f 
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r
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 Calculate  f 
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No Yes

 
 

Figure II.1. Flow chart for computing the Darcy-Weisbach friction factor, f, for the ith link (i.e.,  

                   lateral pipe segment or riser pipe) evaluated based on the link discharge at the mth  

                   iteration, Qi
m (where f c is current estimate of f;  f r is a revised estimate of f; fft is the  

                   value of f for the ith pipe segment when the flow is in the fully turbulent zone) 

 

 

Appendix III. Algorithm for computing the 11Ψ matrix at the (m+1)th gradient iteration 

The computational procedure for updating the 11 matrix (Eq. 29 and Table 6) at the 

(m+1)th iteration, based on the discharge vector at the mth iteration, is depicted in Figure III.1.  
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The following is a summary of the computational steps: 

 

1. Set i = 1 (where i is the link index) and proceed to step 2; 

2. If i is odd integer proceed to step 3; If not proceed to step 5; 

                        

           

i = 1

 Calculate i, Table 1     i ≤ nl

i= i+1

Yes

No
i is odd integer? Emitter only? No

Yes

Yes

 No

Return to computation of Q(m+1) and H(m+1) vectors 

Compute fi , Fig. II.1

 11  matrix is computed

Start computation of   11
 matrix

Calculate i, Table 1 

Compute fi , Fig. II.1

 
 

  Figure III.1. Flow chart for updating the 11 matrix at the (m+1)th iteration based on the  

                      discharge vector at the mth iteration, Qm (where i is link index,  fi is the friction  

                      factor for the ith link computed iteratively based on the link discharge at the mth  

                      gradient iteration, and nl is number of links in the lateral) 
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3. Compute fi (where fi is the friction factor for the ith lateral pipe segment evaluated based on       

    the link discharge at the mth iteration) and proceed to step 4; (Note: A description of the  

    sub-process for computing fi is presented in Appendix II); 

4. Calculate i for the ith lateral pipe segment (Table 1) and proceed to step 7;       

5. If emitter is placed directly on lateral then proceed to step 5.1; If not (i.e., emitter is placed  

    on riser pipe), proceed to step 6; 

    5.1. Calculate i for the ith emitter (Table 1) and proceed to step 7;   

6. Compute fi (where fi is the friction factor for the ith riser pipe segment evaluated based on the  

    emitter discharge at the mth iteration) and proceed to step 6.1; (Note: A description of the sub- 

    process for computing fi iteratively is presented in Appendix II); 

    6.1. Calculate i for the ith riser-emitter ensemble (Table 1) and proceed to step 7; 

7. Set i = i+1 and proceed to step 8; 

8. If i≤nl (where nl is the number of links in the lateral) proceed to step 2; If not proceed to 

    step 9;  

9. The 11 matrix is evaluated based on the mth estimate of the link discharge vector, Qm; end  

    computation and return to the gradient algorithm (Figure 6);       

 

 

Appendix IV. Expressions for the derivatives of the friction factor with respect to discharge 

Expressions for the derivatives of the friction factor for a pipe segment, f, with respect to 

discharge, Q, are presented in this section.  

For Re ≤ 4000,  f can be evaluated with 

)1.IV(
R

64
f

e

=  

 

and  

)2.IV(
R

Q

R

64
Q

f

2
e

e





−=



 

 

Noting that  
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The derivative of f with respect to Q for Re ≤ 4000 can be expressed as 
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For turbulent flow, 4000 < Re, the friction factor, f, is given as  
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and its derivative with respect to the pipe section discharge is expressed as  
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which can then be given as    
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In Eq. IV.8, 
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Expanding the numerator yields 
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Simplifying and rearranging yields 
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Substituting Eqs. IV.6 and IV.11 in Eq. IV.8 and simplifying yields  
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The derivative of f with respect to Q for 4000 < Re can then be expressed as 
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For a pipe section, f can be calculated directly with Eq. IV.4 for Re≤4000 or with Eq. IV.13 for  

4000 < Re.  

 

Appendix V. Algorithm for computing the '
11Ψ  matrix at the (m+1)th iteration 

The computational procedure for updating the11′ matrix at the (m+1)th iteration based 

on the link discharges at the mth iteration are shown in Figure V.1.  

 

The following is a summary of the computational steps: 

 

1. Set i = 1 (where i is the link index); proceed to step 2; 

2. If i is odd integer proceed to step 3; If not proceed to step 5; 

3. Compute fi ′ with Eq. 60 or 61 and proceed to step 4; (Note: fi ′ is the derivative of the friction  

    factor for the ith lateral pipe segment with respect to the ith lateral pipe segment discharge,  

    evaluated based on the discharge at the mth gradient iteration)   

3. Calculate 
m
i

i Q

'
eQF with Eq. 59 and proceed to step 7 (where Qi

m is the ith lateral pipe     

segment discharge at the mth gradient iteration); 

5. If emitter is placed directly on lateral then proceed to step 5.1; If not (i.e., emitter is placed on  

    riser pipe) then proceed to step 6; 



 100 

    5.1. Calculate 
m
i

i Q

'
eQF with Eq. 62 for the ith emitter and proceed to step 7 (where Qi

m is the  

           ith emitter discharge at the mth gradient iteration);    
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Figure V.1. Flow chart for updating the 11′ matrix at the (m+1)th iteration based on the  

                   discharge vector at the mth gradient iteration, Qm (where 
m
i

i Q

'
eQF is the derivative  

                   of the ith link energy balance equation with respect to the ith link discharge  

                   evaluated based on Qi
m; and fi′ is the derivative of f with respect to the ith link  

                   discharge evaluated based on Qi
m) 
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6. Compute fi ′ with Eq. 60 or 61 and proceed to step 6.1 (where fi ′ is the derivative of the  

     friction factor for the ith riser pipe with respect to the ith emitter discharge, evaluated based  

     on the discharge at the mth gradient iteration);   

     6.1. Calculate 
m
i

i Q

'
eQF with Eq. 62 for the ith riser-emitter ensemble and proceed to step 7   

            (where Qi
m is the ith emitter discharge at the mth gradient iteration); 

7. Set i = i+1 and proceed to step 8; 

8. If i≤nl (where nl is the number of links in the lateral) proceed to step 2, if not proceed to step 9;  

9. The 11′ matrix is evaluated based on the mth estimate of the link discharge vector,  Qm ;  

    end computation and return to the gradient algorithm (Figure 6); 

                 

 

Appendix VI. Computation of the inverse of a matrix with LU factorization  

 

For clarity, Eqs. 63-69 (section 4.2.6) are reproduced here. We consider here a square 

matrix, , of some arbitrary dimension, qq, with elements labeled as ij, such that 

 

 )1.VI(Δij R     

 

In Eq. VI.1, i and j are row and column indices, respectively, of matrix ; R is the set of real 

numbers; and  is the standard set notation that implies that ij is a member of the set of real 

numbers. 

 

Further assume that matrix  is nonsingular and has an inverse,  -1, then by definition  

 

)2.VI(1−= ΔΔI   

 

where I is identity matrix with the same dimension as  and can be defined as  
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In Eq. VI.3, ij  is the element of I on its ith row and  jth column. Note that -1 has the same 

dimension and structure as  and its elements, labeled here as ij, are real numbers.  
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We assume here that matrix  can be factorized into a lower triangular, L, and an upper 

triangular, U, matrices with LU factorization method, such that    

 
)4.VI(LUΔ =  

 

Substituting Eq. VI.4 in Eq. VI.2 yields  

)5.VI(1−= LUΔI  

 

Letting 

 

)6.VI(1−= UΔΦ  

  

where  is a q q matrix with elements ij, such that ij  R; Eq. VI.5 can be expressed as 

)7.VI(LΦI=  

 

Computational steps to determine  -1 

 

In the model developed here, computation of the inverse of matrix ,  -1, with an LU 

factorization algorithm is undertaken in the following steps  

 

i.    Factorize  : Factorize matrix  into a lower, L, and an upper, U, triangular matrices (VI.4)     

      with Crout’s algorithm; 

ii.  Compute  : Compute  with VI.7 through forward substitution, starting from the first row  

      and proceeding sequentially down to the bottom row;    

iii. Compute  -1: Compute  -1 with VI.6 through back substitution, starting from the bottom  

      row and proceeding sequentially up to the first row;  

 

i.  LU factorization of matrix  (Crout’s method) 

Matrix L is of the same dimension as matrix  and has the following properties and  

structure   
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where ij is element of matrix L on its ith row and jth column. Matrix U as well is of the same 

dimension as matrix  and has the following properties and structure  

      )9.VI(
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In Eq. VI.9, uij is element of matrix U on its ith row and jth column. Computation of the nonzero 

elements of the L and U matrices proceeds alternately, in which calculation of a column of the L 

matrix is followed by the corresponding row of the U matrix:  

 

i.1. Compute the first column of the L matrix: from row–column operation of matrix  

      multiplication and Eq. VI.4, it can be observed that  

       )10.VI(q.,..,2,1ifor,uΔ 1k

j

1k

ik1i == 
=

             

       where i is row index of matrices  and L and k is column and row index of L and U,  

       respectively. Noting that for 1<k, uk1 = 0 (Eq. VI.9), it can readily be observed that  

       computational efficiency can be enhanced by setting  j = 1 (i.e., j is set to the column index  

       of U in Eq. VI.10). In which case, Eq. VI.10 reduces to             

 

            )11.VI(q.,..,2,1ifor,uΔ 111i1i ==   

 

      From Eq. VI.9, it can be noted that u11 = 1, thus the first column of L can be given as                    

           )12.VI(Δ 1i1i =  

 

Following the row-column operation of matrix multiplication and the already known values  

of the elements of the first column of L, the first row of the U matrix can now be computed.  

 

i.2. Compute the first row of the U matrix: from multiplication of matrices, it can readily be  

      observed that the first row of   is related to the first row of L and the jth column of U as      

      follows 
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)13.VI(q.,..,3,2jfor,uΔ kj

i

1k

k1j1 == 
=

  

      Observe that in Eq. VI.13 we take note of the fact that in the first row of matrix U, u11= 1  

      (Eq. VI.9), hence it need not be part of the row computation. Noting that for 1<k, 0k1 =
 

      
(Eq. VI.8) it can readily be observed that setting i=1 (which is the row index of matrix L in  

      Eq. VI.13) would reduce Eq. VI.13 into a simple and computationally efficient form  

 

             )14.VI(q.,..,3,2jfor,uΔ j111j1 ==   

 

      Since 11,  is known from step i.1 (Eq. VI.12), the first row of U can be given as:  

 )15.VI(q.,..,3,2jfor,
Δ

u
11

j1
j1 ==


 

i.3. Compute the second column of matrix L: from step i.1 and Eq. VI.4, it follows that   

)16.VI(q.,..,3,2ifor,uΔ 2k

j

1k

ik2i == 
=

  

      Observe that in Eq. VI.16 we take note of the fact that in the second column of matrix L, 

      12 = 0 (Eq. VI.8), hence it need not be part of the column computation. Following the same  

      reasoning as in step i.1, above, and noting that j = 2 and u22 = 1 (Eq. VI.9), the unknown, 2i ,  

      can be given as  

            )17.VI(q.,..,3,2ifor,uΔ 121i2i2i =−=    

 

      Similarly, it can be shown that the third column of the L matrix can be expressed as 

 

   )18.VI(q.,..,4,3ifor,uuΔ 232i131i3i3i =−−=   

 

      Note that in a numerical computation, the third column of matrix L can be calculated only  

      after the second row of the U matrix is computed (presented in step i.4). However, the  

      expression for 3i , Eq. VI.18, is presented here for simplicity.  
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      Based on Eqs. VI.12, VI.17, and VI.18, a general expression can be deduced for the jth  

      column of the L matrix 

 

)19.VI(q.,..,1j,jifor,uΔ

1j

1k

kjikijij +=−= 
−

=

  

 

      Note that for j = 1, Eq. VI.19 simplifies to VI.12. Noting that k is always less than j, it can  

      be observed that for the general case in which 1< j, the jth column of L is obtained based  

      on elements of L, ik , that have already been computed in the preceding steps. 

 

i.4. Compute the second row of matrix U: From step i.2 and Eq. VI.4, it follows that  

          )20.VI(q.,..,4,3jfor,uΔ kj

i

1k

k2j2 == 
=

  

        

      Observe that in Eq. VI.20 we take note of the fact that in the second row of matrix U, u21 = 0  

      and u22 = 1 (VI.9), hence they need not be part of the row computation. Following the same  

      reasoning as in step i.1, above, and noting that i = 2 and 22 is known from step i.3, the  

      unknown u2j  can then be expressed as   

            )21.VI(q.,..,4,3jfor,
uΔ

u
22

j121j2
j2 =

−
=




  

 

      Similarly, it can be shown that the third row of the U matrix can be expressed as 

 

  )22.VI(q.,..,5,4jfor,
uuΔ

u
33

j232j131j3
j3 =

−−
=




 

 

     Based on Eqs. VI.15, VI.21, and VI.22, a general expression can be deduced for the ith row  

     of the U matrix 

  )23.VI(qiandq.,..,2i,1ijfor,

uΔ

u
ii

1i

1k

kjikij

ij ++=

−

=


−

=





 

       

     For i = q, Eq. VI.9 shows that all the elements, except the one in the main diagonal of the  

     upper triangular matrix U (i.e., uii), are all zero and uii = 1.        
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     Note that for i =1, Eq. VI.23 reduces to the form given in Eq. VI.15. Noting that k is always  

     less than i, for the general case in which 1< i, the ith row of U is obtained based on elements  

     of U, ukj, that have already been computed in the preceding steps.  

 

ii. Compute matrix , Eq. VI.7 (Forward substitution) 

As noted in a preceding section, matrix  has the same dimension and general form as 

matrix  (Eq. VI.1). Based on Eq. VI.7, elements of the  matrix can be computed through 

forward substitution starting from the first row and proceeding sequentially to the bottom row 

(i.e., i=1, 2,. . ., q). From Eq. VI.8 and the structure of matrix L, it can be observed that the ith 

row of I is related to the row and column, respectively, of the L and  matrices as follows  

         )24.VI(q.,..,2,1jfor,kj

i

1k

ikij == 
=

   

 

Following the same reasoning as that used to obtain a general expression for the ith row of 

matrix U (Eq. VI.23) and noting that for i<k, 0ik =  (Eq. VI.8), it can readily be shown that the 

formula for computing the ith row of matrix  is 

         )25.VI(q.,..,2,1jfor,
ii

1i

1k

kjikij

ij =

−

=


−

=



 

  

It can be observed that for i = 1, Eq. VI.25 reduces to a form analogous to Eq. VI.15. Noting that 

k is always less than i, for the general case in which 1< i, the ith row of  is obtained based on 

elements of , kj, that have already been computed in the preceding steps.  

 

iii. Compute matrix -1, Eq. VI.6 (Back substitution) 

As noted in a preceding section, matrix  -1 has the same dimension and properties as 

matrix  (Eq. VI.1). Based on Eq. VI.6, elements of the  -1 matrix can be computed through 

back substitution starting from the bottom row and proceeding sequentially to the first row (i.e., 

i=q,q-1,. . .,1). Considering Eq. VI.6 and the structure of matrix U, it can be observed that the ith 

row of  is related to the row and column, respectively, of the U and  -1 matrices as follows  

 

       )26.VI(q.,.,.2,1jfor,u kj

q

ik

ikij == 
=

  
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In Eq. VI.26, kj is element of  -1 on row k and column j. Following the same reasoning as that 

used to obtain a general expression for computing matrix U and noting that for k<i, uik = 0, it can 

be shown that the formula for computing the ith row of matrix  -1 is 

 

   )27.VI(q.,.,.2,1jfor,u
q

1ik

kjikijij =−= 
+=

  

 
It can be observed that for k = q+1 (i.e. i=q), Eq. VI.27 reduces to a form analogous to Eq. VI.12. 

Noting that for the general case in which i < q, k is always less than or equal to q and the ith row 

of  -1, ij, is calculated based on elements of  -1, kj, that have already been computed in the 

preceding steps.  

 

Summary:  

(i) Eqs. VI.19 and IV.23 are used to compute the L and U matrices from matrix   (Eq.VI.4),  

(ii) Eq. VI.25 is used to compute matrix   from the L and I matrices (Eq. VI.7), and  

(iii) Eq. VI.27 is used to compute  -1 from the   and U matrices (Eq. VI.6)  

 

Appendix VII. The effect of lateral slope on the broad spatial trends of lateral pressure head  

            In this section the effect of variations in lateral slope on the spatial trends of lateral 

pressure head is studied by analyzing the functional relationship between lateral pressure head 

profile, friction head loss, velocity head, elevation profile, and total head at the lateral inlet. 

 For a given combination of lateral diameter, pipe absolute roughness, residual discharge, 

sprinkler spacing, sprinkler hydraulic characteristics, elevation profile, and total head at the inlet, 

the pressure head profile along a lateral, in which local head losses are assumed negligible, can 

be expressed as  

 

)1.VII(xS)x(V)x(h)ZH()x(h 0hf00 −−−−=   

 

where h(x) is lateral pressure head profile (m); x is distance along the lateral, referenced from the  

inlet (m); H0 is total head at the lateral inlet (m) and is considered constant for a simulation 

problem; Z0 is elevation of the lateral inlet (m), which is also a constant; hf(x) is the friction head 

loss in the lateral segment extending between the lateral inlet and a point at distance x from the 

inlet (m); Vh(x) is velocity head at distance x from the inlet (m); and S0 is lateral slope (-), 

considered here constant. Equation VII.1 states that the pressure head at any given point along a 
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lateral is given as the difference between the sum of the velocity and pressure heads at the lateral 

inlet, (H0-Z0), and the sum of the friction head loss, hf(x), the velocity head, Vh(x), and elevation 

differential, S0x.    

 

Experience with hydraulic simulations of laterals show that, typically, the effect of the velocity 

head, Vh, on pressure head, h, is marginal compared to that of friction head loss, hf , and lateral 

elevation differential, S0x. For instance, simulated data for the five lateral slopes, considered in 

section 5.6.1, show that on the average hf is greater than Vh by about two orders of magnitude. 

Furthermore, the data shows that for the laterals with a nonzero slope, lateral elevation 

differential, S0x, on the average is at least eight times greater than Vh and typically it exceeds Vh 

by an order of magnitude and a half. Thus, Eq. VII.1 can be approximated with Eq. VII.2 without 

significant loss of accuracy 

 

)2.VII(xS)x(h)ZH()x(h 0f00 −−−=  

 

The general spatial behavior of h(x), (i.e., whether it is increasing or decreasing over the entire 

length of the lateral or it is increasing over a segment of the lateral and is decreasing over another) 

can be conveniently evaluated based on the derivative of the pressure head profile with respect to 

distance along the lateral, given as  

 

)3.VII(S)x(h)x(h 0
'

f
' −−=  

 

In Eq. VII.3, h(x) is the derivative of the lateral pressure head profile with respect to distance 

along the lateral, hf(x) is the derivative of friction head loss with respect to distance, and S0 is the 

derivative of the lateral elevation differential, which is the constant slope of the lateral. Equation 

VII.3 states that at any given point along the lateral, the slope of the pressure head profile, h′(x), 

can be approximated by the negative of the algebraic sum of the friction slope, hf(x), and the 

lateral slope.  

  

Note that differentiating h(x), Eq. VII.2, with respect to distance presumes that it is a continuous 

and smooth function of distance. However, this may not be strictly correct, because the lateral 

pressure head profile can be discontinuous and may not be smooth at the junction nodes, thus not 

continuously differentiable over the length of the lateral. These limitations to the differentiability 

of the lateral pressure head profile are associated with local head losses and a step change in 
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lateral discharge at the junction nodes. Evidently, local head losses are not considered in the 

current analyses, thus discontinuity in lateral pressure head profile associated with local head 

losses are impertinent. However, because of discrete changes in lateral discharges across junction 

nodes, the friction head loss, hf(x), and hence pressure head, h(x), functions along a lateral are in 

theory piecewise linear function of distance (i.e., their graphs consist of line segments with 

different slopes intersecting at junction nodes). Thus hf(x), and hence h(x), are not smooth and in 

effect not differentiable at the junction nodes. Evidently this is theoretically important, however, 

experience with simulated data shows that the hf(x) and h(x) curves can be represented in terms 

of smooth nonlinear functions over the entire length of the lateral with a high degree of accuracy. 

The implication is that issues related to smoothness, and hence differentiability, of the hf(x) and 

h(x) curves at junction nodes are of limited practical significance. Nonetheless, in subsequent 

development we will adhere to the theoretical requirement relating to function differentiability.  

 Noting that the hf(x) function is a piecewise linear function of distance, it can be readily 

observed that the hf′(x) function is a step function (i.e., it is discontinuous at the junction nodes 

and is constant over a lateral pipe segment). In addition, the slope of the pressure head function, 

h′(x), is the sum of a step function (i.e, hf′(x)) and a constant function, S0. Thus the slope of the 

pressure head function itself, h′(x), is a step function. Furthermore, hydraulic theory shows that 

for an irrigation lateral with a given slope, the slope of the hf curve, hf(x), is a function of the 

lateral diameter, pipe absolute roughness, residual discharge, sprinkler spacing, sprinkler 

hydraulic characteristics, and the difference between total head and elevation at the inlet. Overall, 

lateral hf(x) is positive (i.e., 0<hf(x)), however, because of the decreasing discharge it is a 

decreasing function of distance from the lateral inlet. By comparison, lateral slope can take both 

negative and positive values.  

 Given the properties of hf(x) and S0, noted above, interesting observations can be made 

with respect to the general spatial behavior of the lateral pressure head profile, h(x), by 

considering a semi-infinite lateral (with an arbitrarily set slope) and taking the limit of h(x), Eq. 

VII.3, as x→+. Accordingly, assuming available total head at the lateral inlet is not limiting, 

the following limits can be noted  

  

)4.VII(SSimand0)x(him 0
x

0

x

'
f ==

+→+→

  

 

and then           
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)5.VII(S)x('him 0
x

−=
+→

  

 

The implication is that the slope of the lateral pressure head profile, h(x), approaches –S0 as 

distance from the lateral inlet increases, but it is not clear whether –S0 is an upper or lower limit 

to h(x). Next we will determine that. As noted above hf(x) is positive but decreasing function of 

distance, it then follows from Eq. VII.4 that zero is the lower limit of the friction slope. 

Conversely, the negative of the friction slope, –hf(x), which is the first term on the right hand 

side of Eq. VII.3, is negative but increasing function of distance. In other words, –hf(x) 

approaches zero as its upper limit, as distance from lateral inlet increases. Noting that S0 is a 

constant, it can then be readily observed from Eq. VII.3 that h′(x) approaches –S0 as its upper 

limit, as distance from lateral inlet increases. 

 

Based on Eqs. VII.3-VII.5, the algebraic sign of S0, and the magnitude (absolute value) of S0 

relative to that of hf ′(0), the following scenarios can be discerned with regard to the general 

behavior of the lateral pressure head profile, h(x).  

 

(i) Lateral with an elevation profile that is level or that increases at a constant rate with distance  

     from inlet (0 ≤ S0)  

     Noting that hf′(x)>0, from Eq. VII.3 it can be observed that  

 

)6.VII(),0[xfor0)x(h' +  

            

     It then follows that h(x) is a decreasing function of distance over the interval [0,+).  

 

(ii) Lateral with an elevation profile that decreases at a constant rate with distance from the inlet   

      (S0<0):  

      The following scenarios can be discerned: 

      (iia) The magnitude of lateral slope is sufficiently large, such that hf ′(0) ≤ |S0|: 

              From Eqs. VII.3 and VII.4 it can be observed that   

 

              )7.VII(),0[xfor)x(h0 ' +  

  

              thus h(x) is an increasing function of distance over the interval [0,+).  
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       (iib) The absolute value of the lateral slope is such that |S0|< hf ′(0):  

               From Eq. VII.3 and VII.4 it can be observed that   

 

               )8.VII(

),x(xfor0)x(h

and,xxat0)x(h

)x,0[xfor0)x(h

min
'

min
'

min
'















+

==



 

       

       where xmin is distance (from lateral inlet) at which hf = |S0| and hence h′ = 0 and pressure  

       head is minimum (m).  

                   Equation VII.8 shows that, under the scenario considered here, the lateral pressure  

       head profile decreases with distance from the lateral inlet, reaches a minimum at  x = xmin,  

       and then increases with distance over the interval xmin<x. Note that xmin is a function of the  

       friction slope of the lateral, hf (and hence all the factors that affect hf, listed above), and the  

       lateral slope.  

      

The results summarized above are important in terms of establishing the general behavior of the 

lateral pressure head profile as a function of lateral slope and friction slope. However, in practice 

lateral length and total head at the lateral inlet are finite. Thus the preceding observations need to 

be modified to take into account these limitations in an actual lateral. In the following section 

each scenario deduced above is recast into a form applicable to an actual lateral with a finite, but 

arbitrarily set, length.   

 

(I)  Lateral with length, L, and slope, S0, such that 0 ≤ S0:  

      Note that this is a special case of scenario i, described above, where lateral length is finite,  

      thus Eq. VII.6 becomes    

 

)9.VII(]L,0[xfor0)x(h'   

 

It follows from Eq. VII.9 that the lateral pressure head profile, h(x), is a decreasing function 

of distance over the entire length of the lateral. Thus the maximum and minimum pressure 

heads occur at the inlet and downstream ends of the lateral, respectively.  
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(II) Lateral with length, L, and slope, S0, such that S0 < 0: Depending on the magnitude of S0  

       relative to that of hf ′(x) the following scenarios can be discerned.  

     (IIa) The absolute value of the lateral slope, S0, is sufficiently large, such that hf ′(0) ≤ |S0|: 

             This is a special case of scenario iia, described in a preceding section, where lateral  

             length is finite, thus Eq. VII.7 becomes  

              

             )10.VII(]L,0[xfor)x(h0 '   

 

             It then follows that the lateral pressure head profile, h(x), is an increasing function of  

             distance over the length of the lateral. Thus, the minimum and maximum pressure heads  

             occur at the inlet and distal ends of the lateral, respectively. Note that such a scenario  

             typically occurs in laterals with steep slopes and/or large diameter pipes, thus may not be  

             common in practice.   

 

      (IIb) The friction slope at the lateral inlet, hf ′(0), exceeds |S0| but |S0| is sufficiently large,  

               such that hf ′(x) ≤ |S0| over a subinterval of the range 0<x< L:  

It can be noted that this is a special case of scenario iib, described above, where  

               the lateral has a finite but arbitrarily set length, L, and that xmin<L. Thus Eq.  

               VII.8 becomes  

 

              )11.VII(
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              Equation VII.11 states that, under the scenario considered here, pressure head  

              decreases with distance from the lateral inlet, reaches a minimum at  

               x = xmin (where hf = |S0| and h′ = 0) and then increases with distance to a local  

              maximum at the distal end of the lateral.  

    Keeping all other factors constant and varying lateral slope only, within realistic  

              ranges, will generally have negligible effects on hf(x) and hf(x). Based on this  

              observation and Eq. VII.3, it can be shown that increasing lateral slope, starting from a  

              small value, will lead to a decrease in xmin and an increase in the minimum pressure head  
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              of the lateral. Furthermore, it can be shown using Eq. VII.3 that depending on the  

              relative magnitudes of the lateral slope and the friction slope, the maximum pressure  

              head can occur at either ends of the lateral. For a given hydraulic and geometric  

              configuration of a lateral, relatively small lateral slopes tend to produce a scenario in  

              which the maximum pressure head occurs at the inlet end of the lateral. Conversely,  

              relatively larger slopes tend to produce scenarios in which maximum lateral pressure  

              head occurs at the downstream end of the lateral.  

    

     (IIc) The absolute value of the lateral slope, S0, is small, such that |S0| < hf ′(x) over the  

             entire length of the lateral:  

This is a special case of scenario iib, Eq. VII.8, where lateral length is finite and 

that L < xmin. Thus, Eq. VII.8 reduces to the form given in Eq. VII.9. It then follows that 

under such a scenario, h(x) is a decreasing function of distance over the entire length of 

the lateral. Thus the maximum and minimum pressure heads occur at the inlet and 

downstream ends of the lateral, respectively.  

 

   (IId) The absolute value of the lateral slope, S0, is such that |S0| = hf ′(L):  

  This is the same scenario as that of scenario IIc above, except that here xmin= L.  

            Thus hf(L) = |S0|, h(L)= 0, and h(L) is the minimum pressure head as defined by  

            theoretical optimality condition. Note that h(x) is characterized in terms of Eq. VII.9.                    

                   

Note that for all the practical scenarios considered above, the h(x) function generally tends 

toward –S0 as its upper limit with increasing distance from lateral inlet. Experience with 

hydraulic simulations show that the negative of the lateral slope provides a good approximation 

of the upper limit of the slope of the pressure head function. However, for sufficiently long 

laterals, because of velocity head effect (not taken into account in the current analysis), the actual 

slope of the pressure head function may marginally exceed the absolute value of the lateral slope.  

  


