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1. Introduction 
 

A derivation of the Penman-Monteith equation with the thermodynamic formulation of Monteith 

(1965,1981) is presented in this report. The resultant set of equations (consisting of expressions 

for latent heat flux, sensible heat flux, and the final air temperature) is shown to represent a 

coupled system. The report details the development and evaluation of alternative numerical 

solutions, based on data covering a wide range of evaporation conditions. Furthermore, equations 

of the resistance parameters, used to define the Penman-Monteith system of equations, are 

reviewed and relationships between the parameters are explored.  

A review of the derivation of the Penman-Monteith equation based on the 

thermodynamic formulation of evaporation (Monteith, 1981) is presented in Chapter 2 of this 

report. Unlike the conventional approach to the derivation of the Penman-Monteith equation, 

where evaporation is treated as vapor and heat transfer process between two points in space (i.e., 

a point in the exchange surface and another one in the air current), the thermodynamic 

conceptualization of evaporation introduces a perspective whereby the process can be studied 

from the vantage point of the changes it introduces in the thermodynamic properties 

(specifically, the latent heat and sensible heat contents) of the ambient air. 

The derivation proceeds in two steps. As an initial approximation, first a form of the 

equation that models evaporation into a quiescent ambient air, from a wet source/sink surface, is 

developed based on the thermodynamic equations of state applied to a suitably defined system. 

In a subsequent step, resistance parameters are introduced into the basic equations accounting for 

the dynamic effects of wind-surface interactions (and the effects of canopy complex response to 

atmospheric conditions) on evaporation, leading to the Penman-Monteith equation. Although less 

compact than the conventional approach (Penman, 1948; Jensen and Allen, 2016), the 
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thermodynamic approach to the derivation of the Penman-Monteith equation has the benefit of 

revealing key assumptions and concepts that are generally implicit in the conventional approach. 

The initial step of the thermodynamic formulation accentuates the notion that the Penman-

Monteith equation is fundamentally a description of the process of vapor and heat transfer 

between a wet source/sink surface and a quiescent ambient air. The subsequent step, on the other 

hand, emphasizes the fact that wind and canopy system effects on evaporation are taken into 

account in an approximate sense, through the introduction of resistance parameters. While 

Chapter 2 essentially presents a review of the approach proposed by Monteith, the derivation 

here, nonetheless, emphasizes basic assumptions, clarifies concepts, and fills gaps left by the 

original discussion. 

 

The derivation in Chapter 2 produces equations for latent heat flux, sensible heat flux, and the 

final air temperature, each expressed as a function of resistance parameters, consisting of the 

bulk surface resistance and the resistances to vapor and heat transfer across the turbulent 

boundary layer. 

It is shown in Chapter 3 that under a suitably defined atmospheric condition, the  

aerodynamic resistance to vapor transfer is equal to the aerodynamic resistance to heat transfer, a  

relationship that led to a simplification of the modified psychrometer constant and hence to the 

common form of the Penman-Monteith system of equations (e.g., Monteith and Unsworth, 

2013). Although the focus in evaporation studies is mainly on the transfer of vapor and sensible 

heat from a canopy complex to the air above, the convective transfer of momentum is also 

integral (and hence inextricably coupled) to the evaporation process. Thus, in Chapter 3, the 

equation for the aerodynamic resistance to momentum transfer is derived and the relationship 
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between the resistance parameters to the convective transfer of momentum and that of vapor/heat 

is explored. The chapter closes with a description of the equation widely used to estimate the 

aerodynamic resistance to vapor/heat transfer and with a reference to a method used for 

estimating the bulk surface resistance in agricultural water management applications.  

 

The equations for latent heat flux, sensible heat flux, and the final air temperature derived in 

Chapter 2 consist of a coupled set, because the value of the slope parameter relating to the 

saturation vapor pressure curve, ∆, is not known a priori. The development and evaluation of 

numerical solutions to the Penman-Monteith system of equations is presented in Chapter 4. Four 

alternative algorithms with varying degrees of complexity (referred to as model 1, 2, 3, and 4) 

are described. Results of model evaluation showed that each of the alternative models produced 

outputs that are essentially identical and also in close agreement with a reference solution. 

Furthermore, intercomparison of the alternative models based on the criteria of numerical 

efficiency and robustness suggests that each model represents a comparable alternative, to any of 

the other models, for estimating evaporation. However, owing to its simplicity, model 1 is 

selected for further analysis.  

A comparison of the outputs of model 1 with those of the conventional model (i.e., the 

approach widely used to evaluate the Penman-Monteith and related equations) shows that 

differences, in the solution techniques implemented, in the two models has maximum effect on 

sensible heat flux estimates (where the mean absolute residual is 18.1%), a negligible effect on 

estimates of the final air temperature (with an average residual of 0.7%), and a limited effect on 

latent heat flux estimates, in which the mean residual is 8.2%.  
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Both model 1 and the conventional model involve a level of approximation in the 

determination of ∆ and hence a direct comparison of the two models cannot provided answer to 

the question: which model is more accurate? In other words, the study presented in this report 

does not address the question of accuracy directly. However, the relatively small mean absolute 

residual  (of 8.2%) for latent heat flux, ℓf, suggests that differences between the ℓf  estimates 

obtained with model 1 and the conventional model should typically be within the margin of error 

of the conventional model (the more widely used of the two models compared here). This 

observation suggests that, from the perspective of agricultural water management applications, 

both the conventional model and model 1 can, on the average, be considered equally valid 

descriptions of evaporation from a cropped field.  

A cautionary note is, nonetheless, in order here. Although the data used in the analysis 

presented in this report cover a range of evaporation scenarios, they are limited and hence a 

conclusive deduction on this may need to await a more comprehensive follow up study focused 

on a comparative evaluation of model 1 and the conventional model. 

 

Chapter 2. Derivation of the Penman-Monteith system of equations with the   

                   thermodynamic approach: A review and theoretical development 
 

2.1.  Introduction  

 

Evaporation from a cropped field is a complex physical process controlled by the interplay of 

weather, crop, and soil factors (Penman, 1948). A comprehensive physically based modeling of 

evaporation from a soil-canopy system requires a numerical solution of the equations describing 

the coupled processes of soil-water dynamics and the transfer and transport of vapor, heat, and 

momentum through the soil-crop-atmosphere continuum, taking into account wind induced 
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advection and forced and free convection. Such a model is complex and demanding in terms of 

the type, resolution, and volume of input data it requires. The resources needed for acquiring and 

maintaining one for use in routine estimation of evaporation could also be prohibitive.  

Typically, for agricultural water management purposes, steady-state evaporation is 

computed with explicit equations as a function of, time averaged, measurable weather data. 

Equations of evaporation are developed based on varying degrees of approximations regarding 

the dominant factors and mechanisms that derive the vapor and heat transfer processes from the 

soil-canopy complex to the atmosphere. For instance, the Bowen ratio method, a method based 

on surface energy balance principles, is used to estimate evaporation from measurements of net 

solar radiation, soil heat flux, and gradients of air temperature and vapor pressure (Brutsaert, 

1982; Monteith and Unsworth, 2013; Jensen and Allen, 2016). The aerodynamic method (e.g., 

Thornthwaite and Holzman, 1942) defined in terms of vapor pressure and wind speed is another 

approach for evaporation estimation from measured weather data. Additional empirical 

approximations that rely on limited sets of weather data for use in areas where a complete set is 

unavailable exist (Doorenbos and Pruitt, 1977). 

An equation that combines the energy balance and aerodynamic components was derived 

by Penman (1948). Monteith (1965) extended the Penman equation into the form widely known 

as the Penman-Monteith equation, which has the same general form as its precursor, but involves 

partitioning of the leaf-boundary-layer resistance to vapor transfer into: (i) stomatal resistance for 

an isolated single leaf or canopy resistance for a uniform stand of vegetation and (ii) resistance to 

the transfer of vapor across the turbulent boundary layer. The Penman-Monteith equation is 

generally considered as the most comprehensive steady-state evaporation equation and as such it 
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was recommended as the standard method by FAO (Allen et al., 1998) and ASCE (Jensen and 

Allen, 2016). 

A survey of the literature suggests that there are two approaches to the derivation of the 

Penman-Monteith equation. The most widely used approach (e.g., Jensen and Allen, 2016), 

broadly patterned after that of Penman (1948), generally considers evaporation as a vapor, heat, 

and momentum transfer process between a source/sink surface and a point (at measurement 

height) in the ambient air current. The rate (of vapor or heat) transfer is directly proportional to 

the respective potential differences and inversely related to the resistances across the points. 

During evaporation, the temperature of the exchange surface is considered constant. While the 

interface between the surface and the ambient air is presumed saturated, the air is generally 

considered unsaturated, although this may not necessarily be a requirement.  

An alternative approach proposed by Monteith (1965, 1981), on the other hand, 

conceptualizes evaporation as a physical process that produces changes in the thermodynamic 

state of the ambient air. A formulation that allows evaporation to be described in terms of (or 

from the vantage point of) the changes it introduces into the energy states of a thermodynamic 

system. Accordingly, a stationary air parcel that exchanges vapor and heat only with a 

source/sink surface is considered here to constitute a thermodynamic system. The approach 

proposes a framework in which evaporation is defined in terms of a pair of formal 

thermodynamic subprocesses (consisting of adiabatic cooling and diabatic heating) that leads to 

an increase/a decrease in the (energy) state of the air parcel in ways that are readily quantifiable. 

Overall, the conventional approach to the derivation of the Penman-Monteith equation (e.g., 

Jensen and Allen, 2016) has the advantage of being mathematically straight forward and 

compact. The thermodynamic approach (Monteith, 1981), on the other hand, has the benefit of  
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revealing of key assumptions and concepts that are generally implicit in the conventional 

approach.  

This chapter derives the Penman-Monteith equation following the thermodynamic 

conceptualization of the evaporation process (Monteith, 1981). While essentially reviewing 

Monteith’s approach, the development here lists a specific set of assumptions that the derivation 

is based on, attempts to fill gaps (mainly in terms of providing extended discussion in places 

where the original discussion was succinct), and emphasizes interpretations of the 

mathematical/physical attributes of the terms and parameters of the Penman-Monteith equation. 

The resultant equations for latent heat flux, sensible heat flux, and the final air temperature, 

referred here as the Penman-Monteith system of equations, consist of a coupled set. Thus, the 

development and evaluation of numerical solutions, to this system of equations, is presented in 

Chapter 4. 

 

2.2. Evaporation as a thermodynamic process and assumptions 

 

Unlike the conventional approach, where evaporation is treated as vapor and heat transfer 

process between two points in space (i.e., a point in the exchange surface and another one in the 

air current), the thermodynamic conceptualization of evaporation introduces a perspective 

whereby the process can be studied from the vantage point of the changes it produces in the 

thermodynamic properties (specifically, the latent heat and sensible heat contents) of the ambient 

air. Following Monteith (1965, 1981), natural evaporation is, thus, described here in terms of a 

pair of formal thermodynamic subprocesses (namely, adiabatic cooling and diabatic heating) that 
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modify the energy state of a suitably defined thermodynamic system (to be specified 

subsequently) in ways that are readily quantifiable.  

Accordingly, the Penman-Monteith equation is deduced in two steps. First, a form of the 

equation that models evaporation into a stationary ambient air from a wet surface is obtained 

based on analysis of the changes in the thermodynamic states of the air parcel using equations of 

state. In a subsequent step, resistance parameters are introduced into the basic equations, 

accounting for the dynamic effects of wind-surface interactions and those of (bulk) canopy 

system response to atmospheric conditions, on evaporation, leading to the Penman-Monteith 

equation.  

The following set of assumptions are introduced here as the basis to the derivation of the 

Penman-Monteith equation with the thermodynamic approach. (i) The thermodynamic system 

consists of an air parcel, of given mass and specified vapor pressure and temperature, that neither 

mixes nor exchanges heat and vapor with the surrounding air, but exchanges vapor and heat with 

a source/sink surface that it is in contact with. Analyses based on air parcels of indeterminate 

form and shape are widely used in thermodynamic studies of the atmosphere in meteorology 

(e.g., Monteith, 1981; Arya, 1991). The presumption here is that observations deduced on the 

evaporation process involving a suitably defined system, based on analysis of the changes in the 

thermodynamic states of the system, can be generalized for the ambient air spanning the entire 

evaporative surface; (ii) The analysis considers an idealized (virtual) surface as the effective 

source/sink for vapor and heat and such a surface is termed here as the exchange surface, or 

simply as, the surface; (iii) The exchange surface has no mass and heat capacity (e.g., Arya, 

1991) and hence it cannot store thermal energy, instead energy incident on the surface in the 

form of solar radiation is reflected and radiated back, used to heat the sub-medium (e.g., a water 
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body or soil and/or crops), and used to heat the air parcel (the latter is a fraction referred here as 

the external heat flux into the air parcel); and (iv) The surface temperature and vapor pressure are 

constant during evaporation and each of the surface energy balance components represent a 

steady flux during an evaporation process. Furthermore, it is presumed that there exist no 

temperature, vapor pressure, and energy flux gradient across the surface.  

 

2.3. Evaporation into a quiescent air   

 

2.3.1.  Description of concepts  

 

To develop the equations for evaporation into a stationary ambient air, consider a scenario in 

which water evaporates, from a wet source/sink surface, into a thermodynamic system defined 

earlier. The thermodynamic state of such a system can be specified in terms of its latent and 

sensible heat contents, which in turn can be represented in terms of surrogate variables: vapor 

pressure, e, and temperature, T, respectively (Monteith, 1965, 1981). It, thus, follows that a vapor 

pressure versus temperature chart, akin to a simplified conceptual psychrometric chart, (sketched 

in Figure 1) can be used to describe the evaporation process into a stationary air parcel. It ought 

to be emphasized here that the use of elements of the psychrometric chart and related terms in 

the, following, description of evaporation is only conceptual.      

Figure 1 depicts some useful thermodynamic states of the air and pertinent processes 

superimposed on the simplified conceptual psychrometric chart. Two key features of the chart 

are the wet-bulb temperature line, w(T) (corresponding to the initial thermodynamic state of the 

air, which is labeled as , (T0,e0)), and the saturation vapor pressure curve, es(T). As can be noted 

from Figure 1, the wet-bulb temperature line contains the states  and β, (Tw,es(Tw)), and the 

negative of its slope,  (KPa/K), is the psychrometer constant. The saturation vapor pressure  
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  Fig 1.  A simplified conceptual psychrometric chart depicting adiabatic cooling of the air  

             parcel (from state  to β) and diabatic heating of the air in a state of saturation  

             (from  to  ). Note: T (K) is temperature, Td (K) is the dewpoint temperature,  

             Tw (K) is the wet-bulb temperature, T0 (K) is the measured air temperature, t (K)  

             defines variable air temperature in the range Tw   t   Ta, es (kPa) is saturated vapor  

             pressure at a specified temperature, e0 or e(T0) (kPa) is measured vapor pressure, and               
             is the psychrometer constant (kPa/K), and ∆ is the slope of the line connecting  

             states  and        

 

curve, on the other hand, contains the points , β, , , and . Points , β, , and  define states of 

saturation, of the air parcel, at the dewpoint temperature, Td, wet-bulb temperature, Tw, the 

measured air temperature, T0, and the final air temperature, Ta, respectively. Furthermore, the 

point , (t,es(t)), is a state of saturation at some temperature t, where Tw  t ≤ Ta, and ∆(t) is the 

slope of the line connecting state  with that of , which is a key parameter in simplifying the 

resultant equation. In Figure 1, the final air temperature, Ta, is greater than the measured dry-

bulb temperature, T0, however, it needs to be pointed out here that this is not a requirement. 
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Noting that points , (T0,e0), and , (Ta,es(Ta)), are the initial and final thermodynamic 

states, respectively, of the air parcel, it can be observed that the change in the thermodynamic 

state of the air from  to that of   involves change in the total heat content (i.e., the sum of the 

sensible and latent heat) of the air parcel. Energy differential between two states of a 

thermodynamic system is independent of the path taken and depends only on the initial and final 

states of the system defined by the thermodynamic properties (e.g., Rajput, 2007). Based on this 

principle, Monteith (1965) proposed a conceptual framework that describes the physics 

underlying natural evaporation, from a wet surface into a moist air parcel of specified vapor 

pressure and temperature, in terms of a pair of formal thermodynamic subprocesses (Figure 1), 

consisting of adiabatic cooling of the air driven by sensible heat extant in the air at the start of 

evaporation and diabatic heating in a state of saturation caused by external heat flux from the 

surface. Note that implicit in this description is the assumption that conversion of heat into work 

done by the air parcel is considered negligible, possibly on account of the consideration that 

evaporation takes place under constant pressure and the variation in air temperature (during 

evaporation) is sufficiently small for the density of the air parcel to be adequately represented by 

an average value. Thus, it is important to note here that description of air density here refers to a 

constant average value over the evaporation process. 

Adiabatic cooling of a moist, yet unsaturated air parcel, is depicted in Figure 1 by the 

path connecting states   and β along the wet-bulb temperature line, w(T). It can be observed 

from Figure 1 that the sensible heat extant in the air parcel at the start of evaporation (state ) is 

steadily reduced, resulting in a corresponding decrease in the air temperature from that of the 

measured temperature, T0, towards the wet-bulb temperature, Tw. However, heat does not cross 

the boundary of the air parcel (adiabatic process), instead it is used to evaporate water from the 
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wet boundary of the parcel, resulting in an increase in the latent heat content of the air parcel and 

hence its vapor pressure from e(T0) towards es(Tw). It thus follows, in the adiabatic process, the 

reduction in the sensible heat content of the air parcel is exactly balanced by the gain in latent 

heat. The processes of adiabatic cooling and humidifying of the air parcel continue eventually 

leading to saturation at the wet-bulb temperature, es(Tw), which is represented by the 

thermodynamic state, .   

By contrast, the diabatic heating process is represented by the path connecting states β 

and  along the saturation vapor pressure curve, es(T), and involves both vapor and heat transfer 

between the exchange surface and the air parcel. For the scenario considered in Figure 1, where 

Ta > Tw, the external heat flux into the air parcel provides the energy that leads to heating of the 

air in a state of saturation. In other words, under the scenario in which Ta exceeds Tw, both the 

sensible heat and latent heat contents of the air parcel and its temperature and vapor pressure 

would increase.  

If, on the other hand, the final air temperature is less than the wet-bulb temperature, i.e., 

Tw > Ta, it can then be observed from Figure 1 that diabatic cooling would occur. In other words, 

there would occur an outflow of both sensible and latent heat from the air parcel, leading to a  

decrease in the sensible and latent heat contents of the air parcel. However, for simplicity, the 

derivation presented here will be based on the assumption that Ta > Tw. It can be shown that the 

form of the equation obtained as such is directly applicable to the scenario where Tw > Ta, the 

only requirement is that the external heat flux needs to have a negative algebraic sign, indicating 

that the air parcel is losing heat to the exchange surface. Notably, a close look at the simplified 

conceptual psychrometric chart reveals that evaporation can occur even when the final air 

temperature, Ta, is less than the measured air temperature, T0, provided Ta is greater than the 
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dewpoint temperature. It will be shown later that the final air temperature is equal to the surface 

temperature. 

Note that evaporation is considered here as a steady-state process. It is, therefore, 

important to observe that the adiabatic cooling and diabatic heating processes should not be 

perceived as consecutive thermodynamic phases in time. They are only used in the conceptual 

definition of evaporation in terms of the constituent thermodynamic subprocesses, the 

identification of corresponding sources of heat, and specification of the changes in the states of 

the system in ways that are readily quantifiable. The preceding formulation of natural 

evaporation as a thermodynamic process (Monteith, 1981) will now be used in subsequent 

derivation of the Penman-Monteith equation.   

 

2.3.2.  Equations 

 

The preceding discussion summarizes the thermodynamic formulation of the evaporation process 

using a relatively simple, and more familiar, conceptual chart that defines the state of the system 

in terms of vapor pressure, e, and temperature, T. However, Monteith (1981) used a conceptual 

two-dimensional chart (that specifies the thermodynamic states of an air parcel in terms of its 

latent heat and sensible heat contents per unit mass) to derive a form of the Penman-Monteith 

equation that models evaporation into a stationary ambient air (of specified e0 and T) from a wet 

exchange surface. Here, on the other hand, the analysis is based on the latent heat, q(T), and 

sensible heat, 𝓁(T), contents of a unit volume of the air parcel, Figure 2. This is predicated on the 

consideration that evaporation takes place under constant pressure and the range of temperature 

changes during evaporation (i.e., the interval between Tw and Ta) are sufficiently small for 
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volume variations to be considered not significant and hence for the air density to be represented 

adequately in terms of an average value.  

 

   Fig 2. Simplified chart depicting the thermodynamic states of an air parcel in an evaporation  

 process (sensible heat and latent heat content space, adapted from Monteith, 1981). ℓ    

 and q are latent heat and sensible heat content of a unit volume of air (J/m3),    

 respectively; the subscripts a and d represent adiabatic and diabatic processes,  

 respectively; , , , and  are thermodynamic states of the air, in the ℓ -q  space,  

 corresponding to those of , , , and  in the e-T space. Note: ∆ is equal to ∆ in the e-T   

 space scaled by the reciprocal of the psychrometer constant 

 

A close look at Figure 2, in light of the unique dependence of 𝓁 and q on temperature, T,  

along the ws line and the 𝓁sat curve, reveals that Figure 2 represents a scaled version of the 

conceptual psychrometric chart, depicted in Figure 1, where the scaling constants are  cp for the 

abscissa and /p for the ordinate (note that the parameters cp,, ,, and p are defined shortly 

in relation to Eq. 1). It can, thus, be observed that there is a one-to-one mapping between the 

thermodynamic states in Figure 1 and those of Figure 2. Accordingly, it can be observed that 
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states  , β, , and   in Figure 2 correspond to states , β, , and   in Figure 1, respectively. 

The adiabatic cooling process is represented by the path connecting states   and β along the ws 

line and diabatic heating of the air parcel, while maintaining saturation, is represented by the 

path connecting  β and  along the 𝓁sat curve. Furthermore, the ∆(t) parameter represents the 

slope of the line connecting states β and  at some temperature t, where Tw  t ≤ Ta. 

The thermodynamic equation of state for latent heat, 𝓁(T), can now be defined along the scaled 

wet-bulb temperature line, ws, and the scaled saturation vapor pressure curve, ℓsat, as 

𝓁(𝑇) = 𝜆𝜌(𝑇),      𝑤ℎ𝑒𝑟𝑒    =
𝜖

(𝑝 − 𝑒) + 𝑒
𝑒(𝑇) ≈ (

 𝜖

𝑝
) 𝑒(𝑇)                           (1) 

 

Similarly, the equation of state for sensible heat, q(T), can be given as 

𝑞(𝑇) = 𝜌𝑐𝑝𝑇                                                                                                                          (2) 

 

where 𝓁(T), J/m3, and q(T), J/m3, are latent heat and sensible heat contents per unit volume of the  

air parcel, respectively;  (Kg/m3) is the density of air;  (J/Kg) is the latent heat of vaporization 

of water;  (Kg-vapor/Kg-moist-air) is the specific humidity of the air;  (-) is the ratio of the 

molar mass of vapor to that of dry air and is set to 0.622; p (KPa) is air pressure; e (KPa) is vapor 

pressure; cp (J/Kg-K) is the specific heat of air at constant pressure; and T (K) is temperature.  

The change in the latent heat content of a unit volume of the air parcel, 𝓁 (J/m3), during  

evaporation, can be expressed as the sum of the adiabatic, 𝓁a, and diabatic, ℓd, components 

 

𝛿𝓁 = 𝛿𝓁𝑎 + 𝛿𝓁𝑑                                                                                                                   (3) 
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Similarly, the corresponding change in the sensible heat content of a unit volume of the air 

parcel, q (J/m3), can be given as the sum of the adiabatic, qa, and diabatic, qd, fractions  

 

𝛿𝑞 = 𝛿𝑞𝑎 + 𝛿𝑞𝑑                                                                                                                  (4) 

 

Expressions for the changes in the latent heat, 𝓁, and sensible heat, q, contents of a unit 

volume of the air parcel as a function of readily measurable weather parameters will now be 

derived.  

 

2.3.2.a.  Evaporation into a moist but unsaturated air, adiabatic cooling process  

 

Consider an air parcel that is cooled from the measured air temperature, T0, to its wet-bulb 

temperature, Tw, adiabatically, while its vapor pressure is increased from e0 (or e(T0)) to es(Tw), 

which is represented by the path between   and   in Figure 2. As noted earlier, in the adiabatic 

process, the changes in the latent heat and sensible heat contents of a unit volume of the air 

parcel (ℓa and qa, respectively) are equal in magnitude, but are of opposite algebraic sign. 

Thus, the heat balance of the air parcel, for the adiabatic process, can be given as  

 

𝛿𝓁𝑎 + 𝛿𝑞𝑎 =  0                                                                                                                   (5)   

 

The decrement in the sensible heat content of a unit volume of the air parcel, qa, defined along 

the path   to   can be expressed as 

𝛿𝑞𝑎 = 𝜌𝑐𝑝(𝑇𝑤 − 𝑇0)                                                                                                          (6) 
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The corresponding increment in the latent heat content of a unit volume of the air  parcel, ℓa, 

can be given as 

𝓁𝑎 =
𝜆𝜌𝜖

𝑝
(𝑒𝑠(𝑇𝑤) − 𝑒0)                                                                                                  (7) 

 

Equations 6 and 7 represent potential differences between the initial and final thermodynamic 

states defining the adiabatic cooling process. Noting that the dry-bulb temperature can be measured 

more readily and accurately than the wet-bulb temperature, an equation that relates the change in 

the latent heat content of the air parcel in the adiabatic process, ℓa, with the vapor pressure deficit 

at the measured temperature, T0, will now be presented. 

Noting that 𝓁a = -qa (from Eq. 5) and equating the negative of the righthand side of Eq. 

6 with that of Eq. 7 and simplifying the resultant expression yields  

 

 𝑒𝑠(𝑇𝑤) − 𝑒0 =   (𝑇0 − 𝑇𝑤),         𝑤ℎ𝑒𝑟𝑒 𝛾 =  
𝑝𝑐𝑝

𝜆𝜖
                                                       (8)     

 

Another key parameter (i.e., in addition to ), which is labeled in Figure 2 as ∆(t) and represents 

the slope of a linear equation that relates point β (q(Tw),𝓁(Tw)) on the ℓsat(T) curve with any 

other point,  (q(t),𝓁(t)), on the same curve will now be introduced 

 

𝓁𝑠𝑎𝑡(𝑇𝑤) = 𝓁𝑠𝑎𝑡(𝑡) − ∆(𝑡)(𝑞(𝑡) − 𝑞(𝑇𝑤))                                                                 (9)     

 

where t is a temperature that varies in the range Tw  t  Ta. Substituting es(T)/p for ℓsat and  

 cpT  for q into Eq. 9 and simplifying yields 

 

 𝑒𝑠(𝑇𝑤) = 𝑒𝑠(𝑡) − ∆
′(𝑡)𝛾(𝑡 − 𝑇𝑤)                                                                                 (10) 
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Based on the definition of the slope of a line, it can be shown that (t) is equal to (t) (Figure 1) 

scaled by the reciprocal of the psychrometer constant 

∆(𝑡) =
∆(𝑡)

𝛾
                                                                                                                      (11) 

 

Combining Eqs. 10 and 11 and simplifying yields  

𝑒𝑠(𝑇𝑤) = 𝑒𝑠(𝑡) − ∆(𝑡)(𝑡 − 𝑇𝑤)                                                                                     (12) 
 

Furthermore, substituting the right-hand side of Eq. 12 into Eq. 8 and rearranging terms yields  

  

 𝑒𝑠(𝑡) − 𝑒0 = ∆(𝑡)(𝑡 − 𝑇𝑤) +  (𝑇0 − 𝑇𝑤)                                                                 (13)     

 

Setting t = T0 and rearranging results in  

 

𝑇0 − 𝑇𝑤 =
𝑒𝑠(𝑇0) − 𝑒0
∆(𝑇0) + 𝛾

                                                                                                    (14) 

 

Note that Eq. 14 is an exact expression, provided ∆(T0) is evaluated at an appropriate 

temperature, , such that  

 

∆(𝑇0) =
𝜕𝑒𝑠(𝑇)

𝜕𝑇
|
𝑇=𝜏

,    𝑤ℎ𝑒𝑟𝑒     𝑇𝑤  ≤  𝜏 ≤  𝑇0                                                      (15) 

 

Combining Eqs. 14 and 6 and then substituting ∆a for ∆(T0) in the resultant expression (while 

noting that in the adiabatic cooling process, ℓa= -qa), yields the expression for ℓa in terms of  

the measured air temperature  

 

𝛿𝓁𝑎 = 𝜌𝑐𝑝
𝑒𝑠(𝑇0) − 𝑒0
∆𝑎 + 𝛾

                                                                                                 (16)    
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The righthand side of Eq. 16 is the adiabatic term of a form of the Penman-Monteith equation 

that models evaporation from a wet surface into a quiescent ambient air. Remarkably, it can be 

shown, based on the concept of wet-bulb temperature (e.g., Monteith and Unsworth, 2013), that 

Eq. 16 is of the same form as the expression for latent heat associated with an isolated system 

cooled adiabatically to its thermodynamic wet-bulb temperature. 

 

2.3.2.b. Evaporation into saturated air, diabatic heating in a state of saturation 

 

In contrast to the adiabatic cooling process, in the diabatic heating process heat transfer between 

the exchange surface and the air parcel is permissible. As noted earlier, in the scenario 

considered here (where Ta > Tw), diabatic heating (driven by a steady external heat flux into the 

air) leads to an increase in both the sensible and latent heat contents of the air parcel and hence to 

a change in the thermodynamic state of the air parcel from that of β (Tw,es(Tw)) to  (Ta,es(Ta)) 

along the scaled saturation vapor pressure curve, Figure 2. It, thus, follows that the answer to the 

question of finding an expression for the change in the latent heat content of the air (along the 

path   to  ) boils down to the determination of the proportionality factor with which the 

external heat flux, which is given, is partitioned into latent and sensible heat contents. 

It follows from the preceding discussion that the heat balance of the air parcel in the 

diabatic process can be given as  

 

𝑄 = 𝛿𝓁𝑑 + 𝛿𝑞𝑑                                                                                                                      (17) 
 

where Q is the external heat input into a unit volume of the air parcel, which leads to a change in 

the total heat content of the air parcel (J/m3). As can be noted from Figure 2, 𝓁d (J/m3) and qd 
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(J/m3) are, respectively, increments in the latent heat and sensible heat contents of a unit volume 

of the air parcel as it is heated in a state of saturation. 

Considering a linear equation (of the form given in Eq. 9) that relates the point  

 (Tw,es(Tw)) on the scaled saturation vapor pressure curve with that of  (Ta,es(Ta)), it can be 

shown that ∆(Ta) = ∆(Ta)/ . Furthermore, a close look at Figure 2 shows that 𝓁d /qd  = ∆(Ta)/ . 

Now, combining the expression 𝓁d /qd = ∆(Ta)/  with Eq. 17 and substituting the notation d 

for ∆(Ta) results in 

Δ𝑑
𝛾
=
𝛿𝓁𝑑
𝛿𝑞𝑑

=
𝛿𝓁𝑑

𝑄 − 𝛿𝓁𝑑
                                                                                                         (18) 

 

Simplifying, yields   

 𝛿𝓁𝑑 =
Δ𝑑Q

Δ𝑑 + 𝛾
                                                                                                                    (19) 

 

2.3.2.c. Combined equations: A form of the Penman-Monteith equation that models  

             evaporation into a stationary ambient air from a wet surface and related equations 

 

The linear equation given in Eq. 12 (in relation to which the slope parameters, a and ∆d, are 

defined) is an exact expression, provided a and ∆d are computed subject to the requirement 

stated in Eq. 15. However, in the interest of keeping the resultant equation for 𝓁 simpler, it is 

assumed here that an effective average , somewhere in the interval [a,d], can be used in place 

of both a and d. Note that this is predicated on the assumption that the temperature interval,  

Ta -T0, during a natural evaporation process is sufficiently small, such that a is close enough to 

d, and hence a constant, , can be used in place of a and d without compromising accuracy.  
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Substituting  for a  and d in Eqs. 16 and 19, respectively, and combining the resultant 

expressions with the equation for 𝓁 (Eq. 3) yields the change in the latent heat content of a unit 

volume of a stationary air parcel during an evaporation process from a wet surface 

 

𝛿𝓁 =
∆𝑄

∆ + 𝛾
 +  𝜌𝑐𝑝

𝑒𝑠(𝑇0) − 𝑒0
∆ + 𝛾

                                                                                 (20) 

 

Note that alternative methods for computing  are presented in Chapter 4.  

 

Following the same approach as that used to deduce the equation for 𝓁d (Eqs. 17 to 19), it can 

be shown that the expression for qd (J/m3) can be given as   

𝑞𝑑 =
𝛾𝑄

𝛥 + 𝛾
                                                                                                                    (21) 

 

Substituting Eq. 21 and the negative of Eq. 16 into Eq. 4 yields the overall change in the sensible 

heat content of a unit volume of the air parcel, q,  

 

𝛿𝑞 =   
𝛾𝑄

𝛥 + 𝛾
− 𝜌𝑐𝑝

𝑒𝑠(𝑇0) − 𝑒0
∆ + 𝛾

                                                                                 (22) 

 

An equation for the final temperature of the air parcel, Ta, can be deduced by combining 

Eq. 22 with a form of the sensible heat equation (Eq. 6), in which the temperatures             

corresponding to the initial and final states of the air parcel are set to T0 and Ta, respectively. 

𝑇𝑎 = 𝑇0 +
𝛾𝑄

𝑐𝑝(𝛥 + 𝛾)
−
𝑒𝑠(𝑇0) − 𝑒0
∆ + 𝛾

                                                                       (23) 
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In the development of Eqs. 20, 22, and 23, evaporation is treated as a process of vapor and heat 

transfer from a wet exchange surface into a stationary ambient air. However, natural evaporation 

from a cropped field, where water availability is not a limiting factor, occurs under a more 

complex set of conditions. Typically, there is advective transport due to wind; interaction 

between wind and the crop-canopy system which leads to the convective transport of 

momentum, heat, and vapor (vertically) by turbulent eddies; and (bulk) crop-canopy system 

effects, which includes crop-physiological response to atmospheric conditions but not limited to 

it. The Penman-Monteith equation will now be developed accounting for these effects, although 

in an approximate sense.  

 

2.4.  The Penman-Monteith equation 

 

2.4.1.  Evaporation described in terms of sensible heat and latent heat flux space and  

           equations 

 

In subsequent development, we will continue to make use of Monteith’s formulation that frames 

evaporation as a thermodynamic process that can be described by tracking the changes in the 

state of a stationary air parcel, of given mass and vapor pressure and temperature, in contact with 

an exchange surface. The assumptions made earlier regarding the modes of interaction of the air 

parcel with the exchange surface and the surrounding air remains in place. In addition, the 

consideration, indicated earlier, that natural evaporation occurs under constant air pressure and 

that the range of variation of temperature is limited (hence the variation in the density of the air 

is sufficiently small to be represented adequately by an average value) holds here as well.  

Furthermore, the following simplifying assumptions are introduced here as the basis to 

the development of the Penman-Monteith equation accounting for the dynamic effects of wind 
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and canopy system effects on natural evaporation: (i) A cropped field with a uniform stand, 

optimal vegetative growth, and no limitations in the availability of water is considered, thus, 

evaporation occurs at the potential rate; (ii) Virtual surfaces, situated within the crop canopy, 

serve as effective sink for momentum, on one hand, and source/sink for vapor and heat, on the 

other; (iii) The turbulent transport of vapor, heat, and momentum between the exchange surfaces 

and the ambient air produced mainly by wind-surface interaction effects and bulk canopy system 

response (to atmospheric conditions) are considered the principal coupled mechanisms that 

control evaporation; (iv) The convective transport of heat and vapor between the source/sink 

surface and the air and the effects of the (bulk) canopy system response to atmospheric 

conditions can be modelled sufficiently accurately by combining the equations for potential 

difference (defined in terms of the thermodynamic equations of state, Eqs. 1 and 2), with an 

appropriate set of resistance parameters; and (v) The cropped field covers a sufficiently 

expansive area (with negligible edge effect) and hence the transfer of physical quantities of 

interest is one-dimensional in the vertical direction. 

Evidently, the introduction of the transfer parameters into the basic equations implies that 

the interest here is not cumulative heat gains/losses by the air parcel during an evaporation 

process, as was the case in the preceding development. Instead, it is in heat fluxes into/from the 

air parcel in the diabatic process and of course in the rate of conversion of thermal energy (from 

sensible heat to latent heat) within the air parcel in the adiabatic process. Accordingly, following 

Monteith (1981), Figure 2 will now be mapped onto a two-dimensional space in which the 

abscissa is sensible heat flux, qf (T) (W/m2), and the ordinate will be latent heat flux, ℓf(T) 

(W/m2), as shown in Figure 3. Note that Monteith (1981) did not specifically present Figure 3 in 

any form, but described its features and applied them to deduce the Penman-Monteith equation.    
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  Figure 3. Simplified chart depicting the thermodynamic states of an air parcel in an  

     evaporation process (sensible and latent heat flux space). ℓf  and qf are the latent heat  

     and sensible heat fluxes (W/m2), respectively; the subscripts a and d represent  

     adiabatic and diabatic processes, respectively; , , , and  are thermodynamic  

     states of the air, in the ℓf -qf  space, corresponding to those of , , , and  in the e-T  

     space; and it will be shown later that ∆ is equal to ∆ in the e-T space scaled by the  

     reciprocal of the modified psychrometer constant 

 

Along the scaled wet-bulb temperature line, ws,f, and that of the scaled saturation vapor 

pressure curve, 𝓁f,s, of Figure 3, the latent heat and sensible heat fluxes can be expressed as 

 

𝑞𝑓(𝑇) =
𝑞(𝑇)

𝑟ℎ
   𝑎𝑛𝑑 𝓁𝑓(𝑇) =

𝓁(𝑇)

𝑟𝑣
                                                                            (24) 

 

 

In Eq. 24, q(T), J/m3, and ℓ(T), J/m3, are latent and sensible heat contents of a unit volume of the 

air parcel, respectively, defined in terms of Eqs. 1 and 2, and rh (s/m) and rv (s/m) are parameters 
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representing resistance to heat and vapor transfer, respectively. Further discussion on the 

resistance parameters and methods used to evaluate them will be presented in Chapter 3.  

 

2.4.2.  Physical interpretation of the flux equations and the use of flux as a thermodynamic    

     property  

 

In principle, fluxes are defined across potential differences. However, that appears not to be the 

case in Eq. 24. A question that may, thus, arise here is: what physical meaning can be assigned to 

the fluxes defined in Eq. 24. The sensible heat flux at some temperature, T, qf(T) or q(T)/rv, can 

be interpreted as the amount of heat that needs to flow into the air parcel, per unit area of the 

surface and in a unit time of interest, in order to raise the heat content of a unit volume of the air 

to such a level that its temperature is increased from a reference temperature (absolute zero, 0 K, 

considered ground state) to T, given the rh value. Similarly, the difference between two levels of 

the sensible heat flux, say between qf(t) and qf(Tw) (which is labeled as qf,d (t) in Figure 3), 

represents the quantity of heat that must flow into the air parcel (across a unit area of the surface 

and in a unit time of interest) so as to raise the heat content of a unit volume of the air by such an 

amount that its temperature is increased from Tw to t, given the resistance parameter. Note that 

same observation can be made with regard to the latent heat flux defined in Eq. 24.     

Another point that may require a closer examination here is the use of fluxes as state 

variables, which appears unconventional. Given that fluxes are not intrinsic properties of the air 

parcel, a question might be raised about the implications of using fluxes as state variables. 

Although Figure 3 is less intuitive than that of Figure 2, it can be shown that there is a one-to-one 

mapping between the set of points in Figures 3 and that of Figure 2 and as such Figure 3 can be 
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considered as an equally valid representation of the thermodynamic states of the air parcel as that 

of Figure 2.  

As noted earlier, it is the unique dependence of latent heat, 𝓁(T), and sensible heat, q(T), 

contents of the air on temperature (along the wet-bulb temperature and the saturation vapor 

pressure curve) that forms the basis of the relationship between Figures 1 and 2. It will now be 

shown that this property remains unchanged following the transformation involving the 

multiplication of 𝓁(T) and q(T) by the reciprocals of the respective resistance parameters,  

Figure 3.  

For practical purposes, the resistance parameters, rv and rh, can generally be considered 

independent of temperature, and hence presumed constant for a given crop and stage of 

development (assuming optimal conditions) and wind condition. This implies that the abscissa of 

Figure 3 is only a scaled version of that of Figure 2, the scaling constant being 1/rh. Hence, 

values on the horizontal axis of Figure 3 would simply be shifted rightwards or leftwards by a 

factor of 1/rh with respect to the corresponding values of the abscissa of Figure 2, depending on 

whether rh < 1 or  rh > 1, respectively. Similarly, the ordinate of Figure 3 is equal to the ordinate 

of Figure 2 scaled by a constant factor of 1/rv. It can, thus, be readily observed that there is a one-

to-one mapping between the set of points constituting the two-dimensional space of Figure 2 and 

those of Figure 3. In other words, every point (or thermodynamic state) in Figure 2 has a 

counterpart (and hence can be uniquely and equally represented) in Figure 3 (for instance, states 

 , β, , and   in Figure 3 correspond to states , β, , and   in Figure 2). Note that the 

same reasoning can be used to show that Figure 3 is simply a scaled version of Figure 1. 

Furthermore, it can be shown that the slope of the scaled saturation vapor pressure curve, Figure 

3, is equal to the slope of the saturation vapor pressure curve, Figure 1, scaled by the reciprocal 
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of the modified psychrometer constant (to be defined later). This implies that the scaled 

saturation vapor pressure curve, 𝓁f,s(T), in Figure 3 has the same general behavior with respect to 

temperature as es(T), i.e., a monotonic increasing convex function of temperature. 

An important point here is that in the context of the thermodynamic conceptualization of 

natural evaporation, a potential difference is defined as the difference between the energy levels 

of the thermodynamic states of the air parcel. By contrast, in the conventional approach to the 

derivation of the Penman-Monteith equation, potential difference represents difference in 

(thermal) energy levels between two points in space, i.e., a point on the surface and another one 

in the air current. Thus, this raises the question whether the physical meaning assigned to the 

parameters rv and rh in the conventional formulation (as the resistance to vapor and heat transfer, 

respectively) and the method used to evaluate them can apply to the thermodynamic formulation. 

This may, perhaps, need to be looked into in some detail. However, following Monteith (1981), 

it is assumed here that rv and rh have the same physical meaning as in the conventional approach 

and can be evaluated with the same method as those used in the conventional approach.  

 

2.4.3.  Equations 

 

The latent heat flux, ℓf (W/m2), and the sensible heat flux, qf (W/m2), into the air parcel during an 

evaporation process can be expressed as the sum of the respective adiabatic and diabatic 

components    

𝓁𝑓 = 𝓁𝑓,𝑎 + 𝓁𝑓,𝑑   𝑎𝑛𝑑     𝑞𝑓 = 𝑞𝑓,𝑎 + 𝑞𝑓,𝑑                                                                    (25)         

 

In Eq. 25, ℓf,a and ℓf,d are the adiabatic and diabatic fractions, respectively, of the latent heat flux 

and qf,a and qf,d represent the components of the sensible heat flux associated with the adiabatic 
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and diabatic processes, respectively. The latent heat and sensible heat fluxes expressed in terms 

of readily measurable weather parameters (including wind speed) and crop factors will now be 

derived. 

 

2.4.3.a. Evaporation into a moist but unsaturated air: Adiabatic cooling process accounting  

              for the convective transfer of heat and vapor and (bulk) canopy system effects  

 

For the adiabatic process, the flux form of the heat balance equation of the air parcel can be 

given as 

  

𝛿𝓁𝑓,𝑎 + 𝛿𝑞𝑓,𝑎 =  0                                                                                                            (26)   

 

Based on Eq. 24, the sensible heat flux associated with the adiabatic process, qf,a, can be 

expressed as the quotient of the potential difference between states  and  , Figure 2, and the 

resistance to heat transfer  

 

𝑞𝑓,𝑎 =  𝑐𝑝
𝑇𝑤 − 𝑇0   

𝑟ℎ
                                                                                                      (27) 

 

The corresponding latent heat flux associated with the adiabatic process, ℓf,a, can be expressed as  

 

𝓁𝑓,𝑎 =  𝑐𝑝
𝑒𝑠(𝑇𝑤) − 𝑒0
𝛾∗ 𝑟ℎ

,      𝑤ℎ𝑒𝑟𝑒   𝛾∗ = 𝛾
𝑟𝑣
𝑟ℎ
                                                         (28) 

 

In Eq. 28, * is the modified psychrometer constant (KPa/K) and , cp, es(Tw), e0, rv, rh, and   were 

defined earlier.  

Given that evaporation is considered here as an adiabatic cooling process, heat is not 

crossing the boundaries of the parcel. Thus, qf,a in Eq. 27 ought to be viewed as the equivalent  

rate at which heat needs to flow from the air parcel onto a unit area of the surface per unit time, if 
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the sensible heat content of a unit volume of the air parcel is to be reduced from the level at state 

  to that at β  (Figure 2) through heat efflux from the air parcel onto the surface. Note that 

similar interpretations can be made for the latent heat flux, Eq. 28, as well.  

With the view of keeping the form of the resultant equation simple, an alternative 

expression that relates 𝓁f,a with the vapor pressure deficit at the measured dry-bulb temperature, 

T0, will now be derived. Noting that 𝓁𝑓,𝑎 = −𝑞𝑓,𝑎 (from Eq. 26) and equating the righthand side 

of Eq. 28 with the negative of the righthand side of Eq. 27 and simplifying yields  

  

𝑒𝑠(𝑇𝑤) − 𝑒0 = 𝛾
∗(𝑇0 − 𝑇𝑤)                                                                                            (29)        

 

A linear equation (of the form given in Eq. 9) that relates the latent heat and sensible heat fluxes 

at states  and  (along the scaled saturation vapor pressure curve, 𝓁f,s, Figure 3) will now be 

introduced  

 𝓁𝑓(𝑇𝑤) = 𝓁𝑓(𝑡) − ∆(𝑡) (𝑞𝑓(𝑡) − 𝑞𝑓(𝑇𝑤))                                                             (30) 

 

Substituting es(T)/(rvp) for ℓf and  cpT/rh for qf  into Eq. 30 yields 

 

𝑒𝑠(𝑇𝑤) = 𝑒𝑠(𝑡) − ∆(𝑡)𝛾
∗(𝑡 − 𝑇𝑤)                                                                             (31) 

 

Based on the definition of the slope of a line, it can be shown that ∆(t) is equal to ∆(t) (Figure 1) 

scaled by the reciprocal of the modified psychrometer constant  

 

∆(𝑡) =
∆(𝑡)

𝛾∗
                                                                                                                      (32) 

 

Combining Eqs. 31 and 32 yields 

 

𝑒𝑠(𝑇𝑤) = 𝑒𝑠(𝑡) − ∆(𝑡)(𝑡 − 𝑇𝑤)                                                                                    (33) 
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Furthermore, substituting the righthand side of Eq. 33 into Eq. 29 and rearranging yields  

 

 𝑒𝑠(𝑡) − 𝑒0 = ∆(𝑡)(𝑡 − 𝑇𝑤) +  ∗(𝑇0 − 𝑇𝑤)                                                                (34)     

 

Setting t = T0 and rearranging, results in  

𝑇0 − 𝑇𝑤 =
𝑒𝑠(𝑇0) − 𝑒0
∆(𝑇0) + 𝛾∗

                                                                                                    (35) 

 

Note that Eq. 35 is an exact expression, provided ∆(T0) is evaluated at an appropriate 

temperature, , such that  

 

∆(𝑇0) =
𝜕𝑒𝑠(𝑇)

𝜕𝑇
|
𝑇=𝜏

,    𝑤ℎ𝑒𝑟𝑒     𝑇𝑤  ≤  𝜏 ≤  𝑇0                                                      (36) 

 

Combining Eqs. 35 and 27 and then substituting ∆a for ∆(T0) in the resultant expression (while 

noting that in the adiabatic cooling process, 𝓁f,a = -qf,a), it can be shown that the adiabatic 

fraction of the latent heat flux, ℓf,a, can be expressed as  

 

𝓁𝑓,𝑎 =   𝑐𝑝  
𝑒𝑠(𝑇0) − 𝑒0
( Δ𝑎 + 𝛾∗)𝑟ℎ

                                                                                                (37) 

 

2.4.3.b. Evaporation into saturated air: Diabatic heating in a state saturation accounting for  

             the convective transfer of heat and vapor and (bulk) canopy system response    

 

For the diabatic component of the evaporation process, the flux form of the heat balance of the 

air parcel can be given as 

 

𝑄𝑓 = 𝓁𝑓,𝑑 + 𝑞𝑓,𝑑                                                                                                              (38) 

 

where Qf  is the steady external heat flux into the air parcel (W/m2), which is equal to the net 

surface heat flux minus the ground heat flux. 
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Considering a linear equation (of the form given in Eq. 30) that relates the point  

 (Tw, es(Tw)) on the scaled saturation vapor pressure curve with that of  (Ta,es(Ta)), i.e., a 

scenario in which ∆(t) = ∆(Ta); it can be readily observed (from Eq. 32) that ∆(Ta) = ∆(Ta)/ . 

Using d  in place of ∆(Ta), it follows from Figure 3 that  

 
Δ𝑑
𝛾∗
=
𝓁𝑓,𝑑

𝑞𝑓,𝑑
                                                                                                                            (39) 

 

Substituting the expression Qf -𝓁f,d  for qf,d (from Eq. 38) into Eq. 39 and rearranging yields the 

expression for the diabatic fraction of the latent heat flux, ℓf,d 

 

𝓁𝑓,𝑑 =
Δ𝑑𝑄𝑓

𝛥𝑑 + 𝛾∗
                                                                                                                   (40) 

 

2.4.3.c. The Penman-Monteith system of equations 

Substituting Δ for Δa in Eq. 37 and for Δd in Eq. 40 (based on the assumption Δa  Δd = Δ, 

Eq. 20) and combining the resultant expressions with the equation for latent heat flux, 𝓁f (Eq. 25) 

yields 

𝓁𝑓 =
Δ𝑄𝑓

Δ + 𝛾∗
 +  𝜌𝑐𝑝

𝑒𝑠(𝑇0) − 𝑒0
(∆ + 𝛾∗)𝑟ℎ

                                                                                 (41) 

 

Following the approach used to deduce Eq. 40, the expression for the diabatic component of the 

sensible heat flux, qf,d, can be expressed as  

𝑞𝑓,𝑑 =
𝛾∗𝑄𝑓

Δ + 𝛾∗
                                                                                                                  (42) 

 

Substituting Eq. 42 and the negative of Eq. 37 into the expression for qf (Eq. 25) yields the 

equation for the net sensible heat flux into the air parcel, qf, during evaporation  
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𝑞𝑓 =  
𝛾∗𝑄𝑓

𝛥 + 𝛾∗
− 𝜌𝑐𝑝

𝑒𝑠(𝑇0) − 𝑒0
 (∆ + 𝛾∗)𝑟ℎ  

                                                                               (43)   

 

An equation for the final temperature of the air parcel, Ta, can be deduced by combining Eq. 43 

with a form of the sensible heat equation (Eq. 27), in which the temperatures corresponding to 

the initial and final states of the air are set to T0 and Ta, respectively.  

𝑇𝑎 = 𝑇0 +
𝛾∗𝑟ℎ𝑄𝑓

𝑐𝑝(Δ + 𝛾∗)
−
𝑒𝑠(𝑇0) − 𝑒0
∆ + 𝛾∗

                                                                     (44)             

 

It can be observed that the equation for the final air temperature, Eq. 44, is identical to the 

expression for the temperature of the exchange surface (e.g., Monteith and Unsworth, 2013). 

Considering that the surface temperature and the external heat flux into the air parcel are both 

held steady through the evaporation process, it can be observed that the equivalence of the 

expressions for the final air temperature and the surface temperature points to the fact that the 

surface temperature is the same as the equilibrium air temperature.   

 

2.4.3.d. Resistance parameters  

 

As noted earlier, the resistance parameters to vapor and heat transfer (rv and rh) are introduced 

into Eq. 24 to take into account the dynamic effects of turbulence generated by wind-surface 

interactions, and the effects of (bulk) canopy system response to atmospheric conditions, on 

evaporation from a field with a uniform stand of vegetation. However, the pathway for vapor 

transfer from a plant leaf to the atmosphere is considered to be composed of two distinct 

mechanisms: vapor transfer from the leaf through the stomata and cuticle to the laminar sublayer 

on the leaf surface by diffusion (controlled mainly by crop-physiological response to 

atmospheric conditions) followed by a convective vapor transport across the turbulent boundary 

layer (Monteith, 1965 and 1981). Thus, Monteith (1965) described the resistance to vapor 
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transfer, rv, as the sum total of stomatal and cuticular resistance, rs, and resistance to vapor 

transport in the turbulent boundary layer, rb (note that partitioning of the resistance to vapor 

transfer along this line was also described by Penman, 1953). Accordingly, the parameter  *, Eq. 

28, can be given as  

 

𝛾∗ =  𝛾
𝑟𝑏 + 𝑟𝑠
𝑟ℎ

                                                                                                                (45) 

 

For an area of uniform vegetation stand, rs, is referred to as canopy resistance (Monteith and 

Unsworth 2013). The equivalent parameter, in agricultural applications, is the bulk surface 

resistance (Allen et al. 1998), which accounts for crop-canopy system effects, including crop-

physiological response to atmospheric conditions, although not limited to it. As can be noted 

from Eq. 45, Eqs. 41, 43, and 44 are defined in terms three different resistance parameters: the 

bulk surface resistance to vapor transfer, rs, the turbulent boundary layer resistance to vapor 

transfer, rb, and the resistance to heat transfer, rh. A method for determining rs is described by 

Allen et al. (1998) and Jensen and Allen (2016). Considering a neutral atmospheric condition (a 

widely used approximation in estimating evaporation with the Penman–Monteith equation), rb 

and rh can be considered equal, leading to the simplification 

 

𝛾∗ = 𝛾 (1 +
𝑟𝑠
𝑟𝑎
)                                                                                                            (46) 

 

Eq. 46 is obtained from Eq. 45 by substituting the notation ra (s/m) for the aerodynamic 

resistances to vapor and heat transfer: rb and rh. For simplicity, ra is often referred to as the 

aerodynamic resistance (e.g., Allen et al., 1998). More discussion on this along with the equation 

commonly used to estimate ra in evapotranspiration estimation, in agricultural water 

management applications, will be presented in Chapter 3.  
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The equations for latent heat flux, Eq. 41, sensible heat flux, Eq. 43, and the final air 

temperature, Eq. 44, henceforth referred to as the Penman-Monteith system of equations, cannot 

be evaluated directly, because the variable ∆ is not known a priori. Thus, alternative numerical 

solutions to this system of equations are presented in Chapter 4. 

 

2.5.  Discussion  

 

Approaches to the derivation of the Penman-Monteith equation can fall into two categories. The 

most widely used approach (e.g., Jensen and Allen, 2016; Penman, 1948) considers evaporation 

as vapor, heat, and momentum transfer process between a source/sink surface and a point (at 

measurement height) in the ambient air current. The alternative approach (Monteith, 1981), on 

the other hand, conceptualizes evaporation as a thermodynamic process that produces changes in 

the thermodynamic state of the ambient air.  

Overall, the conventional approach to the derivation of the Penman-Monteith equation 

has the advantage of being mathematically direct and compact. The thermodynamic approach, on 

the other hand, is more revealing of key assumptions and concepts that are generally implicit in 

the conventional approach. It also brings-forth some useful physical interpretations of the terms, 

and mathematical attributes of key parameters, of the Penman-Monteith equation. The following 

describes the advantages accruing from the use of the thermodynamic formulation to the 

derivation of the Penman-Monteith equation and some additional points.   

 

The thermodynamic method uses a two-step approach to derive the Penman-Monteith equation. 

As part of the mechanics of the derivation process, the initial step reveals that the Penman-

Monteith equation is fundamentally a description of the transfer of vapor and heat between a wet 



 

35 
 

source/sink surface and a quiescent ambient air, a fact accentuated by the use of the 

thermodynamic equations of state to define potential difference. The dynamic effects of wind 

and canopy complex effects on evaporation are taken into account through the introduction of 

resistance parameters into the basic equations in the subsequent step. A step that underlines the 

notion that, in the Penman-Monteith equation, the convective transport of heat, vapor, and 

momentum and canopy system effects on evaporation are taken into account in the approximate 

sense. Although these observations can certainly be made in the context of the conventional 

derivation, they are, nonetheless, implicit and hence are not as obvious and natural to the 

derivation as is the case with the thermodynamic approach.       

  

Another important consequence of applying the thermodynamic approach to the derivation of the 

Penman-Monteith equation is that it emphasizes the notion that evaporation is a process that is 

fundamentally driven by energy (heat) supply, although heat effects on evaporation are 

modulated by other weather parameters (including, vapor pressure deficit and wind speed) and 

crop factors. Accordingly, the thermodynamic approach shows that each term in the Penman-

Monteith equation represents evaporation flux attributable to a separate heat source: (i) The 

sensible heat extant in the air parcel at the initial state of the air (which is a function of the 

thermodynamic history of the air parcel) contributes to evaporation through a process of 

adiabatic cooling, leading to saturation of the air at the wet-bulb temperature (Figures 1 to 3) and 

(ii) A steady supply of external heat (for Ta > Tw), in the form of net surface heat flux minus the 

sub-medium heat flux, which contributes to a further increase in the latent heat content of the air 

while maintaining a state of saturation.  

   



 

36 
 

A close look at the conceptual charts (Figures 1 to 3) used in the derivation presented here, in 

light of the fact that the final (equilibrium) air temperature is equal to the steady surface 

temperature, readily reveals that evaporation can occur with a surface temperature that is less 

than the air temperature, provided the surface temperature is greater than the dewpoint 

temperature. While such an observation can possibly be made in the context of the conventional 

derivation, it would, however, be intuitive and hence not as evident and inherent to the derivation 

as is the case with the thermodynamic approach.        

 

Given that the thermodynamic derivation is based on conceptual charts depicting the energy 

states of the air parcel (Figures 1 to 3), it readily reveals the mathematical/physical attributes of a 

key parameter of the Penman-Monteith equation,  (i.e., the slope of a line connecting a pair of 

points on the saturation vapor pressure curve). Specifically, the thermodynamic formulation 

readily reveals that the introduction of the ∆ parameter allowed for any thermodynamic state on 

the saturation vapor pressure curve, [t,es(t)] in Figure 1, to be related to that of [Tw,es(Tw)] with a 

simple, yet exact (linear) equation, provided  is allowed to vary with the air temperature, t. The 

derivation has led to an alternative form of the Penman-Monteith equation, which is expressed in 

terms of ∆a and ∆d (shorthand for ∆(T0) and ∆(Ta), respectively). However, in the interest of 

keeping the resultant equation simple ∆ is treated as a constant (i.e., ∆a  ∆d), contingent on the 

assumption that the temperature interval [T0,Ta] is sufficiently small for the accuracy of the 

resultant expression to be considered acceptable. Note that this concept is key to the derivation of 

the Penman-Monteith equation.  
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The derivation shows that the introduction of the air density parameter into the thermodynamic 

equations of state and hence into the Penman-Monteith equation, which resulted in heat contents 

of the air being expressed in a unit volume basis, presumes that the range of (air) temperature 

variation during evaporation, i.e., [Ta -Tw], is sufficiently small for the density of the air to be 

adequately represented by an average value. Note that this constraint on the range of temperature 

variation is independent of the requirement that relates to the constancy assumption of the ∆ 

parameter. 

 

A close look at the Penman-Monteith equation shows that both terms of the equation contain the 

modified psychrometer constant, *, which is a function of the aerodynamic resistance parameter. 

The fact that both terms of the Penman-Monteith equation represent thermal energy flux, only 

from different sources, and that both terms contain the parameter * suggest that the 

thermodynamic description of the terms as adiabatic and diabatic components (Monteith and 

Unsworth, 2013) might be a more precise interpretation. 

 

In the conventional approach to the derivation of the Penman-Monteith equation, potential 

difference is defined as the difference in energy levels between two points in space (i.e., a point 

in the source/sink surface and another one in the air current). By contrast, in the thermodynamic 

formulation, potential difference is defined as the difference in the energy levels between the 

thermodynamic states of a suitably defined system. Thus, this may raise the question whether the 

physical meaning associated with the parameters rv and rh in the conventional approach (as 

resistance parameters to the transfer of vapor and heat, respectively) and the method used to 
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evaluate them can apply to the thermodynamic formulation. This point may, perhaps, need to be 

looked into in some detail in a follow up study. 

 

Chapter 3. Integrated forms of the vapor, heat, and momentum transfer  

         equations and the respective resistance parameters   
 

3.1. Introduction  

 

Natural evaporation from a field with a uniform stand of vegetation is generally modelled as a 

process involving the transfer of vapor and heat between an exchange surface and the ambient 

air. The surface being a virtual plane, within the vegetation canopy, that serves as an effective 

source/sink for the physical constituents of interest. The transport mechanism consists of a near 

surface turbulent transport process, which is coupled to the canopy system response to 

atmospheric conditions. While the turbulent transport processes are attributed to forced 

convection produced by wind-surface interactions (in practice, by wind and canopy system 

interactions), the (bulk) canopy system response to atmospheric conditions, on the other hand, 

include crop physiological response to atmospheric conditions, although not limited to it.  

As shown in Chapter 2, the Penman-Monteith system of equations takes into account the 

convective transfer of constituents across the turbulent boundary layer and bulk canopy system  

effects, in an approximate manner, through the introduction of resistance parameters to the 

equations of state, Eqs.1 and 2. This chapter presents equations for the resistance parameters. 

While the focus in evaporation studies is, mainly, on vapor and heat transport, the 

transfer of momentum is also inextricably coupled to the evaporation process. Thus, following 

Monteith (1981) and Monteith and Unsworth (2013), relationships between fluxes and potential 

gradients are used here to obtain integral expressions for the resistance parameters to vapor, 
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sensible heat, and momentum transfer. It is shown that, under neutral atmospheric conditions, the 

(aerodynamic) resistance to vapor and heat transfer are equal, but are greater than the 

aerodynamic resistance to momentum transfer. Furthermore, the expression for the aerodynamic 

resistance to momentum transfer (which relates the resistance parameter to the average 

horizontal wind velocity at measurement height, wind measurement height from the ground 

surface, and surface roughness and form factor - both of which are dependent on crop 

characteristics) is derived.  An expression that relates the aerodynamic resistance to momentum 

with those of vapor/heat transfer is reviewed. The chapter then closes by presenting the equation 

widely used to evaluate the aerodynamic resistance to vapor/heat transfer and with a reference to 

a method for estimating the bulk surface resistance in agricultural water management 

applications (Allen et al., 1998). 

 

3.2. Integrated forms of the transfer equations 

 

The steady-state vertical flux of vapor, heat, or momentum in the ambient air, where molecular 

processes dominate, can be expressed as the product of a transfer coefficient, the density of air, 

and the spatial gradient of the physical constituent of interest. These equations are based on 

Fick’s law for diffusive transport of vapor, Fourier’s equation for heat conduction, and Newton’s 

law of viscosity for momentum. Equations of the same form are used to model the convective 

transfer of each of these physical quantities but with a different set of transfer coefficients 

(Monteith and Unsworth, 2013). Thus, the expression for vapor, sensible heat, and momentum 

flux across a transport pathway can be given as   

𝐹𝑣(𝑧) = −𝜌(𝑧)𝐾𝑣(𝑧)
𝑑

𝑑𝑧
                                                                                                (1)  
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𝐹ℎ(𝑧) = −𝜌(𝑧)𝐾ℎ(𝑧)
𝑑(𝑐𝑝𝑇)

𝑑𝑧
                                                                                       (2)  

   

𝐹𝑚(𝑧) = (𝑧) 𝐾𝑚(𝑧)
𝑑𝑢

𝑑𝑧
                                                                                                 (3)  

 

In Eqs. 1 to 3, Fv is vapor flux (kg/s-m2); Fh is sensible heat flux (W/m2), and Fm is momentum 

flux (N/m2);  is the density of air (kg/m3); Kv, Kh, and Km are the turbulent transfer coefficient 

for vapor, heat, and momentum, respectively (m2/s); and u is time averaged horizontal wind 

velocity (m/s); and z (m) vertical distance referenced from the ground surface. Note that in Eqs. 1 

to 3, the parameters Fv, Fh, Fm, , Kv, Kh, Km, , T, and u are parameters expressed as functions of 

above ground height.  

Now, consider the transfer of the physical constituents across a pair of points, labeled 

here  as points 1 and 2, subject to the following simplifying assumptions: (i) flux, F, is constant 

across the points. And (ii) the scale of the transfer pathway is such that the variation in air 

density, (z), can be considered sufficiently small and hence it can be represented adequately by 

an average value,  (Monteith, 1981). The constant fluxes of the physical quantities can then be 

evaluated based on the integrated forms of Eqs. 1 to 3. A general form of the flux integral 

expression describing the convective transfer of vapor, sensible heat, and momentum can be 

expressed as  

𝐹 = 𝑠𝑖𝑔𝑛()  
2 − 1

∫
𝑑𝑧
𝐾(𝑧)

𝑍2
𝑍1

                                                                                                 (4) 

 

In Eq. 4, F is the constant flux of a constituent (which could be vapor, sensible heat, or 

momentum) across the transfer pathway,  is 2 -1, and 1 and 2 are the quantity of a given 

physical constituent in a unit mass of air at points 1 and 2, respectively. Note that if the physical 

constituent to be evaluated in Eq. 4 is vapor flux, then  represents the specific humidity of the 
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air, , and K represents Kv. If, on the other hand, the constituent of interest is sensible heat, then 

 stands for the product cp T and K represents Kh. For the case in which the constituent of interest 

is momentum,  represent the time averaged horizontal velocity of wind, u, and K represents Km. 

Observe that the introduction of the signum function allows Eq. 4 to be consistent with Eqs. 1  

to 3.  

Taking a close look at Eq. 4, one may draw analogy between Ohm’s law which relates 

the current (flux of electrical charge) between two points in a circuit with the quotient of the 

electrical potential difference between the points and the resistance across the points. 

Accordingly, the numerator on the righthand side of Eq. 4 can be viewed as the potential 

difference between points 1 and 2 and the denominator can be considered as the resistance to the 

transfer of a physical constituent across the transfer pathway, which can be expressed as  

𝐹 = 𝑠𝑖𝑔𝑛() 
 

𝑟
                                                                                                          (5)  

 

In Eq. 5, r (s/m) is the resistance to the turbulent transfer of a constituent between the points. 

Based on Eqs. 4 and 5, the aerodynamic resistance parameter, r, can now be expressed as   

 

𝑟 = ∫
𝑑𝑧

𝐾(𝑧)
                                                                                                                      (6)      

𝑍2

𝑍1

 

 

Considering an atmospheric condition in neutral stability (a common practice in estimating 

evaporation), momentum, heat, and vapor are considered to be transported equally effectively 

(Monteith and Unsworth, 2013). In other words, under a unit potential gradient the flux of each 

of these quantities must be equal. Thus, based on Eqs. 1 to 3 and the simplifying assumptions 

that led to Eq. 4, it can be observed that the transfer coefficients for vapor, heat, and momentum 

are equal 
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𝐾𝑚 = 𝐾ℎ = 𝐾𝑏                                                                                                                (7)          

 

Equation 7 coupled with Eq. 6 can be used to deduce an important relationship between the 

aerodynamic resistance parameters for heat, vapor, and momentum. Given the relationship in Eq. 

7, it can be observed that the aerodynamic resistance parameters for heat, vapor, and momentum 

would be the same if the intervals of integration in Eq. 6 are the same for all the physical 

constituents of interest. The transfer pathway of the respective constituents is generally limited 

by the source/sink surfaces and the height at which wind velocity, vapor pressure, and 

temperature are measured in the ambient air current. 

While the apparent source/sink surface for vapor and heat is the same, the apparent sink 

for momentum is located at a higher level in the canopy (Monteith and Unsworth, 2013). Now, if 

we assume the measurement height for vapor pressure and temperature are the same, it can then 

be observed based on the relationships given in Eq. 6 and 7 that the resistance to the turbulent 

transfer of vapor, rb, and that of heat, rh, can be considered the same.    

 𝑟𝑏 = 𝑟ℎ                                                                                                                             (8)          
 

The resistance to the turbulent transfer of momentum, however, is smaller than rb and rh. 

Accordingly, the expression for the modified psychrometer constant,  *, (Eq. 45 of Chapter 2) 

can be simplified to 

  

𝛾∗ = 𝛾 (1 +
𝑟𝑠
𝑟𝑎
)                                                                                                            (9) 

 

Note that Eq. 9 is obtained from Eq. 45 (Chapter 2) by setting ra = rb = rh. The notation ra is the 

aerodynamic resistance to vapor and heat transfer and is often referred to, simply, as the 

aerodynamic resistance.  
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The bulk surface resistance, rs, can be evaluated as a function of stomatal resistance and 

crop leaf area index with a method described by Allen et al. (1998) and Allen (1986). An 

equation widely used to evaluate the aerodynamic resistance, ra, in agricultural water 

management applications will be presented later in the chapter. Before that, however, an 

expression will be derived for the resistance to momentum transfer, rm, and the relationship 

between rm and ra will be explored. 

 

3.3. Aerodynamic resistances to momentum, vapor, and heat transfer 

 

3.3.1. Logarithmic wind velocity profile  

 

The vertical profile of the time averaged horizontal wind velocity, which can be the local 

momentum in a unit mass of air, is a key input in the development of expressions for the 

aerodynamic resistance parameters for vapor, heat, and momentum. Thus, first, an expression 

will be derived for the wind velocity profile. To start the derivation, consider the equation for the 

shearing stress,  (N/m2), that wind exerts on the surface that constitutes the apparent sink for 

momentum  

𝜏 = 𝜌𝐾𝑚(𝑥)
𝑑𝑢

𝑑𝑧
                                                                                                           (10)  

 

where x is the vertical distance referenced from the surface that serves as the sink for 

momentum. Note that the shear stress, , is the same as momentum flux Fm(z), given in Eq. 3.    

  

Equation 10 can be expressed as    

 

 
𝑑𝑢

𝑑𝑧
=

𝜏

𝜌𝐾𝑚(𝑥)
                                                                                                             (11)  
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A mathematically equivalent form to Eq. 11 is   

 

𝑑𝑢

𝑑𝑧
= 𝑓(𝜏, 𝜌, 𝑥)                                                                                                            (12)  

 

An alternative expression for the velocity gradient can be deduced based on dimensional 

reasoning (e.g., Arya, 1991). Thus, following Buckingham’s  theorem it can be shown that  

 

𝑑𝑢

𝑑𝑧
 =



𝑥
√
𝜏 

𝜌
                                                                                                                (13) 

 

In Eq. 13,  is a dimensionless proportionality constant [-] and is taken to be the reciprocal of a 

physical constant called the von Karman constant (𝜅), and the expression √
 


  is the shear 

velocity, u* (m/s).  

 

Eq. 13 can, now, be expressed in terms of the shear velocity, u*, as follows  

 

𝑑𝑢

𝑑𝑧
 =

𝑢∗
2

𝜅𝑢∗𝑥
                                                                                                                  (14) 

 

Furthermore, Eq. 11 can be written in terms of u* as  

𝑑𝑢

𝑑𝑧
 =     

𝑢∗
2

𝐾𝑚(𝑥)
                                                                                                           (15)  

 

It can be observed from Eqs. 14 and 15 that  

 

𝐾𝑚(𝑥) =  𝜅𝑢∗𝑥                                                                                                            (16) 

 

For fields with vegetation, the ground surface is not the effective sink for momentum. Instead, it 

is a plane somewhere above the ground but within the crop canopy. The above ground height of 

this surface is termed as the zero-plane displacement, d. Thus, for vegetated fields, the variable, 
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x, in Eq. 16 can be given as x = z-d. Substituting the expression z-d for x into Eq. 16, then 

combining Eqs. 16 with 15, and rearranging yields  

𝑑𝑢 =  
𝑢∗

𝜅(𝑧 − 𝑑)
 𝑑𝑧                                                                                                   (17)       

Integrating the lefthand side of Eq. 17 between u = 0 and u = u(Z), (i.e., the average wind 

velocity at height Z) and the righthand side between a lower limit of d+z0m  (i.e., the height at 

which u = 0) and an upper limit of Z, yields an expression for u(Z) 

𝑢(𝑍) =  
𝑢∗
𝜅
ln (
𝑍 − 𝑑

𝑧0𝑚
)                                                                                             (18) 

 

In Eq. 18, z0m (m) is a constant termed as the roughness length for momentum transfer. Penman 

and Long (1959) reported that a logarithmic wind profile of the form given in Eq. 18 conforms to 

experience under neutral atmosphere. For atmospheric conditions that are not neutral, the 

righthand side of Eq. 18 need to be augmented with an additional term (e.g., Jensen and Allen, 

2016). Note that d+z0m is the above ground height of the surface that serves as the apparent sink 

for momentum (i.e., the height at which the theoretical logarithmic wind velocity profile is zero).  

 

3.3.2. Equation for the resistance to momentum transfer, rm   

 

Following Monteith and Unsworth (2013), the derivation of the expression for the aerodynamic 

resistance to momentum transfer, rm, starts with a statement of the shearing stress equation.  

𝜏 = 𝜌𝐾𝑚
𝑑𝑢

𝑑𝑧
                                                                                                               (19) 
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Based on Ohm’s law analogy (Eq. 4), Eq. 19 can be expressed as the ratio of the difference 

between the momentum in a unit volume of air at points 2 and 1 and the resistance to momentum 

transfer between the points 

 

𝜏 = 𝜌
𝑢2 − 𝑢1
𝑟𝑚

                                                                                                            (20) 

 

Noting that 𝑢∗
2 = 

𝜏

𝜌
, and rearranging terms yields an expression for the aerodynamic resistance  

𝑟𝑚 = 
𝑢2 − 𝑢1
𝑢∗2

                                                                                                             (21) 

 

For a scenario in which wind velocity is measured at two points, i.e., Z1 and Z2, the expression 

for rm can be obtained by substituting the expressions for u2 and u1 (Eq. 18) into Eq. 21 

 

𝑟𝑚 = 

𝑢∗
𝑘
(ln (

𝑍2 − 𝑑
𝑧0𝑚

) − ln (
𝑍1 − 𝑑
𝑧0𝑚

)  )

𝑢∗2
  =  

ln (
𝑍2 − 𝑑
𝑍1 − 𝑑

)

𝑘𝑢∗
                                (22) 

 

If, on the other hand, wind speed is measured at a single point, say at height Z (as is commonly 

the case in practice), then the other point on the wind velocity profile can be assumed to be at the 

height where u = 0 (i.e., d+z0m). Equation 21 can, thus, be expressed as  

 

𝑟𝑚 =  
𝑢(𝑍) − 𝑢(𝑑 + 𝑧0𝑚)

𝑢∗2
                                                                                     (23) 

 

Substituting the expression for u(Z), from Eq. 18, into Eq. 23 and noting that u(d+z0m) = 0 yields    

𝑟𝑚 =  
ln (
𝑍 − 𝑑
𝑧0𝑚

)

𝑘𝑢∗
                                                                                                       (24) 

 

Substituting the expression for u*, from Eq. 18, into Eq. 24 and simplifying results in the 

expression for the aerodynamic resistance to momentum 
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𝑟𝑚 =  
ln (
𝑍 − 𝑑
𝑧0𝑚

)
2

𝑘2𝑢(𝑍)
                                                                                                     (25) 

 

3.3.3. Equation for the aerodynamic resistance parameters, ra   

 

Monteith and Unsworth (2013), expressed ra in a form analogous to that of rm, Eq. 24, as follows    

    

𝑟𝑎 =  
ln (
𝑍 − 𝑑
𝑧𝑜ℎ

)

𝑘𝑢∗
                                                                                                        (26) 

 

where zoh is the roughness length for heat and vapor transfer. Given that ra > rm, it can be 

observed that zoh < zom. Noting that the righthand of Eq. 26 can be expressed as  

𝑟𝑎 =
ln (
𝑍 − 𝑑
𝑧0𝑚

)

𝑘𝑢∗
+
ln (
𝑧𝑜𝑚
𝑧𝑜ℎ
)

𝑘𝑢∗
                                                                                      (27) 

 

It can be observed that ra is the sum of the aerodynamic resistance to momentum, rm, (Eq. 24) 

and a term defined as a function of the ratio of zom to zoh.  

Equation 27 is significant for its conceptual value. However, the equation widely used in 

the evaluation of the aerodynamic resistance in agricultural water management applications is the 

form given by Allen et al. (1998), which is also described by Brutsaert (1982). 

𝑟𝑎 =  
ln (
𝑍𝑚 − 𝑑
𝑧0𝑚

) ln (
𝑍ℎ − 𝑑
𝑧0ℎ

)

 𝑘2𝑢(𝑍)
                                                                            (28) 

 

In Eq. 28, Zm and Zh are measurement heights for wind and vapor pressure (m), respectively; z0m 

is the roughness length for momentum transfer (m); and zoh is the roughness length for heat and 

vapor transfer (m). Note that Eq. 28 is of analogous form as Eq. 25. 
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An important note here is that in the conventional approach to the derivation of the Penman-

Monteith equation, potential difference is defined as the difference in energy levels between two 

points in space (i.e., a point in the source/sink surface and another one in the air current). By 

contrast, in the thermodynamic formulation (Chapter 2), potential difference is defined as the 

difference in the energy levels between the thermodynamic states of a suitably defined system. 

Thus, this may lead to the question whether the physical meaning associated with the parameters, 

rv and rh (Eq. 24 of Chapter 2), in the conventional approach (as resistance parameters to the 

transfer of vapor and heat, respectively) and the method used to evaluate them can apply to the 

thermodynamic formulation. This point may, perhaps, need to be looked into in some detail in a 

follow up study. 

 

Chapter 4. The Penman-Monteith system of equations: Numerical solutions  

                   and evaluation  
 

4.1. Introduction 

 

A review of the derivation of the Penman-Monteith equation based on the thermodynamic 

approach of Monteith (1965; 1981) is presented in Chapter 2. Description of the development 

and evaluation of numerical solutions to the resultant set of equations is the subject of this 

chapter.  

 

From an agricultural water management standpoint, the most important equation that emerges 

from the derivation is the expression for latent heat flux, ℓf. However, in its basic form, the 

Penman–Monteith equation is not an explicit formula for ℓf, because the slope parameter related 
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to the saturation vapor pressure curve, Δ, is not a given parameter, it is instead a variable. As a 

result, the ℓf, equation along with the sensible heat, qf, and the final air temperature, Ta, equations 

represent a coupled set of three equations in four variables (ℓf, qf, Ta, and Δ). Evidently, this 

system of equations is in indeterminate form. 

One of two approaches can be used to circumvent this problem. The most widely used 

approach, referred here as the conventional model, determines ∆ independently, based on the 

assumption that a satisfactory approximation of ∆ can be obtained if it is set to the slope of the 

saturation vapor pressure curve at the measured air temperature, T0 (Allen et al., 1998; Jensen 

and Allen, 2016; Howell and Evett, 2004). Substituting the Δ value obtained as such into the ℓf, 

qf, and Ta  equations leads to an uncoupled set that can be solved directly. This simplification is 

equivalent to local linearization of the saturation vapor pressure function about T0. While it is 

advantageous in the sense that it leads to an uncoupled system of equations that can be solved 

directly, it, nonetheless, introduces a level of approximation in the variable estimates (Paw U and 

Gao, 1988). 

An alternative approach (e.g., McArthur 1990, 1992) involves augmenting the ℓf, qf, and 

Ta equations with an approximate expression that is obtained based on the constancy assumption 

of ∆ described in Chapter 2 [Note: for brevity, this equation will henceforth be referred to as the 

∆ equation]. The resultant set consisting of four equations in four variables (ℓf, qf, Ta, and ∆) can 

then be solved numerically.  

A different set of solutions that compute the latent heat and sensible heat fluxes along 

with the surface temperature iteratively exist (e.g., Bristow 1987; Lascano and van Bevel 2007). 

In general, these approaches combine the basic energy flux (ℓf and qf) equations with the surface 
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energy balance equation leading to a form expressed in terms of the surface temperature, which 

is then solved with a suitable iterative method. Although these formulations are based on 

the same basic physical principles as that of the Penman–Monteith equations, they, nonetheless, 

differ from the Penman–Monteith form and hence were not considered in the current study. 

 

In the study reported here, four alternative algorithms (labeled as model 1, 2, 3, and 4) were 

developed and evaluated: Model 1 consists of a programmatic implementation of McArthur’s 

approach, which uses a sequential function-evaluation based iterative solution of the final air 

temperature, Ta,, and the ∆ equations. Model 2 is based on a simultaneous iterative solution of the 

Ta and ∆ equations. Models 3 uses Newton iteration of a nonlinear equation in Ta, obtained by 

combining the Ta and ∆ equations in a way that eliminates ∆. And Model 4 involves a 

simultaneous iterative solution of a variant of the complete set of equations obtained by recasting 

each of the latent heat flux, sensible heat flux, and the final air temperature equations into a form 

where the variables are 𝓁f, qf, and Ta only.  

Model 1, 2, or 3 uses a two-step approach to compute the evaporation variables. First, the 

Ta and  values or the Ta value, as the case may be, is computed (based on a suitable iterative 

method) and in a second step, the resultant  is substituted in the latent heat and sensible heat 

equations to determine ℓf and qf. On the other hand, model 4 computes the variables through 

simultaneous iterative solution. While model 4 should in principle lead to an accurate solution, 

the inclusion of models 1, 2, and 3 in the current study was justified on the consideration that 

they may potentially represent simpler and sufficiently accurate alternative to model 4. 

To the best of the current authors’ knowledge, the study by McArthur (1990) is the only 

published work that solved the Penman-Monteith equations iteratively, thus, the results of  
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McArthur were considered in the current study as reference solution. Accordingly, the alternative 

models developed in the current study were evaluated through comparison of model outputs with 

McArthur’s data. Results of model verification showed that each of the alternative models 

produced outputs that are essentially identical and also in close agreement with the reference 

solution. The mean absolute residuals between variable estimates computed with the models 

presented here and those reported by McArthur range from a minimum of about 0.2% for Ta and 

a maximum of 1.9% for ∆. Furthermore, intercomparison of the alternative models based on the 

criteria of numerical efficiency and robustness revealed that each model represents a comparable 

alternative, to each of the other models, for estimating evaporation. However, model 1 (which is 

based on sequential function-evaluation approach) is simpler than the other models (which are 

based on a simultaneous iterative solution of the complete set or reduced form thereof) both 

conceptually and in terms of its numerical formulation and programmatic implementation. Thus, 

model 1 was considered for further analysis.  

The performance of model 1 is then compared to that of the conventional model based on 

a total of seven hypothetical data sets, covering a wide range of natural evaporation conditions. 

The results suggest that differences in the methods used for estimating ∆ have the maximum 

effect on sensible heat flux estimates (where the mean absolute residual is 18.1%), a negligible 

effect on estimates of the final air temperature (with an average residual of 0.7%), and a limited 

effect on the estimates of latent heat flux (where the mean residual is 8.2%).  

Given that both model 1 and the conventional model involve a level of approximation in 

the determination of ∆, it can be observed that direct comparison of the two models cannot 

provide answer to the question: which model is more accurate? Thus, the current study does not 

answer that question. However, considering the latent heat flux, ℓf (which is the most important 
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of the evaporation variables as far as irrigation management applications are concerned), the 

relatively small average residual (of 8.2%) suggests that differences between ℓf  estimates 

obtained with model 1 and the conventional model should typically be within the margin of error 

of the conventional model. This observation suggests that, typically, the use of both the 

conventional model and model 1 can be considered equally acceptable from the standpoint of 

accuracy.  

 

4.2. Outline of the chapter 

 

A brief review of the Penman-Monteith system of equations is summarized in a section titled 

theory, which is then followed by a description of numerical solutions, consisting of four of 

alternative algorithms. Evaluation of the performance of the alternative numerical solutions 

based on comparison of model outputs with the results reported by McArthur (1990) is presented 

in a subsequent segment. Intercomparison of the alternative models and model selection, for 

further consideration, is described next. In the last section of the chapter, a comparison of the 

selected model with the conventional model (i.e., the approach widely used to evaluate the 

Penman-Monteith set of equations) is presented, followed by description and analysis of the 

output data and a discussion on implications of results on the relative accuracy of the models. 

4.3. Theory  

 

The Penman–Monteith system of equations, derived in the companion manuscript, are 

summarized here for convenience 

 

𝓁𝑓 =
𝛥𝑄𝑓

𝛥 +  𝛾∗
+   𝑐𝑝

𝑒𝑠(𝑇0) − 𝑒0
 (Δ + 𝛾∗)𝑟𝑎

,      𝑤ℎ𝑒𝑟𝑒  𝓁𝑓 = 𝜆𝐸  𝑎𝑛𝑑  𝛾
∗ = 𝛾 (1 +

𝑟𝑠
𝑟𝑎
)     (1)    
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𝑞𝑓 =  
𝛾∗𝑄𝑓

𝛥 + 𝛾∗
− 𝜌𝑐𝑝

𝑒𝑠(𝑇0) − 𝑒0
 (∆ + 𝛾∗)𝑟𝑎  

                                                                                     (2) 

 

𝑇𝑎 = 𝑇0 +
𝛾∗𝑟𝑎𝑄𝑓

𝑐𝑝(Δ + 𝛾∗)
−
𝑒𝑠(𝑇0) − 𝑒0
∆ + 𝛾∗

                                                                             (3)        

 

In Eqs. 1 to 3, 𝓁f  (W/m2) is latent heat flux;  (J/Kg) is the latent heat of vaporization of water;  

E (Kg/s-m2) is evaporation flux;  (KPa/K) is slope parameter related to the saturation vapor 

pressure function; Qf  (W/m2) is the available energy for partitioning into sensible and latent heat 

components (i.e., the external heat flux into the air, which is equal to the net surface heat flux 

minus the sub-medium heat flux);  *(KPa/K) is the modified psychrometer constant;  (KPa/K) 

is the psychrometer constant; rs (s/m) is bulk surface resistance; ra (s/m) aerodynamic resistance;  

 (Kg/m3) is the density of the ambient air; cp (J/Kg-K) is the heat capacity of the air at constant 

pressure; es(T) (KPa) is the saturation vapor pressure at temperature, T; T0 (K) is the measured air 

temperature; e0 (KPa) is the measured vapor pressure; and Ta (K) is the final air temperature.  

In Eqs. 1 to 3, the latent heat flux, 𝓁f, the slope parameter related the saturation vapor 

pressure curve, , the sensible heat flux, qf, and the final air temperature, Ta, are variables and 

the rest of the physical quantities are given parameters. Notably, this system of equations  

contains three equations with four variables, which implies that it is of indeterminate form. Thus, 

in order to obtain a unique solution, the system must be conditioned following either one of the 

following approaches: one of the variables needs to be determined independently of Eqs. 1 to 3 

or Eqs. 1 to 3 need to be augmented with an additional equation. Generally, the following two 

approaches are used to solve this problem, both involving a level of approximation in the 

determination of .  
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The most widely used approach, referred here as the conventional model, assumes that a 

satisfactory approximation of  can be obtained if it is set to the slope of the saturation vapor 

pressure function at the measured air temperature, 
𝑑𝑒𝑠

𝑑𝑇
|
𝑇=𝑇0

, (Allen et al., 1998; Jensen and Allen, 

2016; Howell and Evett, 2004). The assumption is predicated on the consideration that the 

difference between the surface and the air temperatures are generally sufficiently small 

for 
𝑑𝑒𝑠

𝑑𝑇
|
𝑇=𝑇0

 to be a good approximation of  and for the resultant estimate of 𝓁f  to be of 

acceptable accuracy. The Δ value determined, as such, can then be substituted into Eqs. 1–3 to 

calculate 𝓁f, qf, and Ta directly. The fact that the approach leads to an uncoupled set of equations 

is an advantage, but this simplification leads to an approximation error. 

The second approach involves augmenting Eqs. 1 to 3 with an additional equation of the 

form  

 

𝑒𝑠(𝑇0) =  𝑒𝑠(𝑇𝑎) − ∆(𝑇𝑎 − 𝑇0)                                                                                      (4) 
 

Note that Eq. 4 is an approximate expression deduced from Eq. 12 of Chapter 2 based on 

the constancy assumption of Δ (McArthur 1990). The exact form of Eq. 12 (in Chapter 2) 

requires Δ to vary with the air temperature, which would have resulted in a pair of equations, 

wherein one of the equations is expressed in terms of Δa =Δ(T0) and another one given in terms 

of Δd = Δ(Ta) [note that Δa and Δd are the exact values of the parameter associated with the 

adiabatic and diabatic components]. However, if the difference between the measured and final 

air temperatures, [T0, Ta], encountered in a natural evaporation process can be considered 

sufficiently small, then Δ can be treated as a constant (e.g., Monteith 1981), which leads to the 

relationship given in Eq. (4). Given Eq. 4, it can be observed that the resultant set, consisting of 
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Eqs. 1–4, represents a system of four equations in four variables (𝓁f,, qf, Ta, and Δ) for which 

iterative solutions can be readily developed based on standard iteration methods. Considering 

that Eq. 4 is not an exact expression, it ought be noted here that the iterative approach (wherein Δ 

is assumed constant) also involves a level of approximation. 

A simultaneous solution of the complete set of equations (Eqs. 1 to 4 or modified forms 

thereof)  should in principle lead to a more accurate solution. However, a close look at Eqs. 1 

and 2 reveals that these equations contain one variable each (ℓf in the case of Eq. 1 and qf  in the 

case of  Eq. 2) that do not appear in any of the other equations (i.e., Eqs. 3 and 4). Furthermore, 

Eqs. 1 and 2 share only the variable ∆ with the other equations. This observation suggests that in 

their current form, Eqs. 1 and 2 are not as strongly coupled to Eqs 3 and 4, as for instance Eq. 3 

is to that of Eq. 4 or vice-versa (where both equations are functions of Ta and ). The preceding 

observation suggests that a simpler formulation, than a simultaneous solution of the complete set 

of equations, could lead to sufficiently accurate but more efficient and robust solutions. More 

discussion on this will be provided in Section 4.6.4. 

Accordingly, in the current development alternative solution techniques with a varying 

degree of complexity were developed and evaluated: (i) Programmatic implementation of 

McArthur’s sequential function-evaluation based iterative scheme, in which Eqs. 3 and 4 are first 

solved for Ta  and ∆ and then the ∆ value obtained as such is substituted into Eqs. 1 and 2 to 

determine 𝓁f  and qf (referred here as model 1). (ii) Simultaneous iterative solution of Eqs. 3 and 4 

for Ta  and ∆ with the Newton method, followed by calculation of 𝓁f  and qf with Eqs. 1 and 2 

(labeled as model 2). (iii) Newton iteration of a nonlinear equation in Ta, obtained by combining 

Eqs. 3 and 4 in a way that eliminates ∆. The Ta value computed as such is then substituted in Eq. 

4 to determine ∆, which in turn is substituted into Eqs. 1 and 2 to calculate 𝓁f  and qf (described as 
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model 3). And (iv) Simultaneous iterative solution of a form of the complete set of equations 

obtained by recasting Eqs. 1 to 3 into a form where the variables are 𝓁f, qf, and Ta only (referred 

here as model 4).  

 

4.4. Numerical solution     

 

Alternative numerical solutions, described here as models 1, 2, 3, and 4, were developed for the 

system of equations presented earlier. Models 1, 2, and 3 use a two-step approach to determine 

the variables: 𝓁f , qf, Ta, and ∆. The first phase uses different formulations/iteration methods to 

solve Eqs. 3 and 4 for Ta  and ∆. Then, in the second phase, the ∆ value so computed is 

substituted into Eqs. 1 and 2 to determine 𝓁f  and qf, respectively. Model 4, on the other hand, 

computes the variables 𝓁f , qf, and Ta through a simultaneous solution of a form Eqs. 1 to 4. A 

description of the equations and outlines of the numerical algorithms are presented here.  

 

 

4.4.1. Function evaluation based iterative scheme of McArthur (1990), model 1 

 

4.4.1.a. Model description  

 

Model 1 consists of an algorithm for the programmatic implementation of McArthur’s approach 

to the solution of Eqs. 1 to 4. With this approach, Eqs. 3 and 4 are decoupled from Eqs. 1 and 2 

and are solved for  and the surface temperature, Ts. As noted in Chapter 2, the variable referred 

to as the final (equilibrium) air temperature, Ta, in the current formulation is in fact the surface 

temperature. Thus, for consistency, Ta will be used in place of Ts in this manuscript.  
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With the sequential function-evaluation based approach of McArthur, iteration starts by 

setting the initial estimate of  to the slope of the saturation vapor pressure function at the 

measured air temperature, T0. The initial value of  is then substituted into Eq. 3 to calculate the 

corresponding value of the final air temperature, Ta. The Ta value determined as such is then 

substituted into Eq. 4 to obtain a revised estimate of , which in turn is used to calculate a 

revised estimate of Ta with Eq. 3. In each iteration, two function evaluations are performed 

sequentially leading to revised estimates of the variables  and Ta. At the end of each iteration, 

the latent heat flux, 𝓁f, is calculated as a function of the current value of  and then convergence 

test is conducted. Convergence is assumed when the incremental changes in , Ta, and 𝓁f  in an 

iteration are considered sufficiently small.  

 For convenience, a pair of modifications are introduced (to McArthur’s approach) in the 

development and implementation of the algorithm for model 1. Unlike McAthur’s solution, in 

the current algorithm latent heat flux, 𝓁f, is not calculated at every iteration. Instead, it is 

computed only once based on the  value obtained at convergence. The reason is explained as 

follows. A close look at the equations for 𝓁f , Ta, and  shows that, in any given iteration, 𝓁f  is 

evaluated as a function of the current value of . However, the latent heat flux, 𝓁f, obtained as 

such cannot be substituted back into Eqs. 3 and 4 where it can affect the  and Ta values 

computed in subsequent iterations. In other words, 𝓁f calculated in a given iteration does not 

contribute to improvements in the solution in subsequent iterations, thus, it need not be evaluated 

in any of the iterations, except the last. 

Furthermore, in model 1, the iterative solution is initiated with the final air temperature, 

Ta, set to 1.05T0. By contrast, McArthur’s solution (as noted earlier) begins by setting  to 
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𝑑𝑒𝑠

𝑑𝑇
|
𝑇=𝑇0

. As a result, in the algorithm presented here, the sequence of function evaluations (in an 

iteration) takes place in reverse order compared to that of McArthur’s approach. Note that 

starting the iteration by initializing the final air temperature, instead of that of , was considered 

here a more intuitive and convenient option. Nevertheless, the two approaches are substantively 

the same and it can be shown that they produce the same results. 

 

Computational procedure, model 1  

 

1. Initialize the iteration index and variables: 

(1a) Set the iteration index, i, to 0. Go to step 1b. 

(1b) Set Ta
i = 1.05T0, where Ta

i is the ith estimate of Ta. Go to step 2. 

2. Calculate the ith estimate of , i, with Eq. 5 (deduced from Eq. 4) 

 


𝑖 =

𝑒𝑠(𝑇𝑎
𝑖) − 𝑒𝑠(𝑇0)

𝑇𝑎
𝑖 − 𝑇0

                                                                                                 (5) 

where the saturation vapor pressure function, es(T), is defined with the form (Murray 1967; 

Bucks 1981)  

 

 𝑒𝑠(𝑇) = 0.611 exp (
17.27(𝑇−273)

𝑇−36
)                                                                                  (6)                                 

   

    In Eq. 6, T is air temperature (K). Go to step 3. 

3. Calculate a revised estimate of Ta, Ta
(i+1), with Eq. 7 (from Eq. 3) 

 

       𝑇𝑎
(𝑖+1) = 𝑇0 +

𝛾∗𝑟𝑎𝑄𝑓

𝑐𝑝(Δ𝑖 + 𝛾∗)
−
𝑒𝑠(𝑇0) − 𝑒0
∆𝑖 + 𝛾∗

                                                           (7)        

Go to step 4. 

4. If i = 0, then go to step 8. If, on the other and, i > 0, then go to step 5. 
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5. Calculate the incremental changes on Ta  and ∆: 

(5a) Calculate the (i+1)th incremental change in Ta, Ta
(i+1), with Eq. 8    

              𝛿𝑇𝑎
(𝑖+1) = 𝑇𝑎

(𝑖+1) − 𝑇𝑎
𝑖                                                                                        (8) 

   Go to step 5b. 

(5b) Calculate the incremental change in ∆ at the ith iteration, ∆i, with Eq. 9    

              𝛿∆ 𝑖 = ∆𝑖 − ∆ (𝑖−1)                                                                                            (9) 

  Go to step 6.  

6. Convergence test  

(6a) If Ta
(i+1)  0.001K, then go to step 6b. If, on the other hand, Ta

(i+1) > 0.001K, then go  

       to step 8. 

      (6b) If  ∆i  0.00001KPa/K, then go to step 7. If, on the other hand, ∆(i-1) > 0.00001KPa/K,  

              then go to step 8. 

7. The iteration has converged and the solution is : Ta = Ta
i and  = i . Go to step 11. 

8. Set i = i+1 and go to step 9. 

9. If i  MaxIteration (where MaxIteration is the maximum number of iterations allowed), then 

go to step 2. If, on the other hand, i > MaxIteration then go to step 10. 

10. The iteration failed to converge. Go to step 12. 

11. Calculate 𝓁f  and qf  with Eqs. 1 and 2, respectively, based on the value of   obtained in step 

7, and determine the corresponding evaporation flux, Ef (mm/day) with  

 

𝐸𝑓 = 3.525 × 10
−2𝓁𝑓                                                                                                     (10) 

 

Go to step 12. 

 

12.  End computation. 
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4.4.2. Simultaneous solution of equations 3 and 4 with the Newton method, model 2 

 

4.4.2.a. Equations 

 

With this approach, Eqs. 3 and 4 are solved simultaneously with the Newton method. 

Accordingly, Eqs. 3 and 4 are first written in the form, F(x) = 0, where x is the variable vector 

𝑇𝑎 − 𝑇0 −
𝛾∗𝑟𝑎𝑄𝑓

𝑐𝑝(Δ + 𝛾∗)
+
𝑒𝑠(𝑇0) − 𝑒0
∆ + 𝛾∗

 = 0                                                              (11)        

 

 𝑒𝑠(𝑇𝑎) − 𝑒𝑠(𝑇0) − ∆(𝑇𝑎 − 𝑇0)   = 0                                                                         (12) 

 

At each Newton iteration, say at the ith iteration, a pair of linear equations of the form given in 

Eq. 13 are solved simultaneously  

𝜦(𝒙𝒊)𝛿𝒙(𝒊+𝟏)  =   −𝑭(𝒙𝒊)                                                                                              (13)  
 

In Eq. 13, xi is the variable vector at the ith iteration, given as   

 

𝒙𝒊 = (
𝑇𝑎
𝑖

∆𝑖
)                                                                                                                       (14) 

 

F is the residual vector whose elements are the lefthand sides of Eqs. 11 and 12 evaluated at  

x = xi 

𝑭(𝒙𝑖) = (
𝐹11(𝒙)|𝒙=𝒙𝒊

𝐹12(𝒙)|𝒙=𝒙𝒊
)                                                                                                (15) 

 

In Eq. 15, 𝐹11(𝒙)|𝒙=𝒙𝒊  and  𝐹12(𝒙)|𝒙=𝒙𝒊 are the lefthand sides of Eqs. 11 and 12 evaluated at  

x = xi.  is a coefficient matrix given as  
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𝜦(𝒙𝒊) = (
[𝛁𝐹11(𝒙)|𝒙=𝒙𝒊]

𝑻

     [𝛁𝐹12(𝒙)|𝒙=𝒙𝒊]
𝑻
)                                                                             (16)  

 

where [𝛁𝐹11(𝒙)|𝒙=𝒙𝒊]
𝑻
 and [𝛁𝐹12(𝒙)|𝒙=𝒙𝒊]

𝑻
 are the transposes of the gradient vectors of the 

lefthand sides of Eqs. 11 and 12, respectively, evaluated at x = xi and are expressed as  

 

[𝛁𝐹11(𝒙)|𝒙=𝒙𝒊]
𝑻
= (1.0, −

𝑒𝑠(𝑇0)−𝑒0−
𝛾∗𝑟𝑎𝑄𝑓

𝜌𝑐𝑝

(∆𝑖+𝛾∗)
2 )                                                         (17)    

 

[𝛁𝐹12(𝒙)|𝒙=𝒙𝒊]
𝑻
= (4093.0

𝑒𝑠(𝑇𝑎
𝑖)

(𝑇𝑎
𝑖−36)2

− ∆𝑖, −(𝑇𝑎
𝑖 − 𝑇0))                                  (18) 

 

Furthermore, in Eq. 13, 𝛿𝒙(𝒊+𝟏) is the (i+1)th incremental change in the variable vector  

 

𝛿𝒙(𝒊+𝟏) = (
𝛿𝑇𝑎

(𝑖+1)

   𝛿∆(𝑖+1)
)                                                                                              (19) 

 

Computational procedure, model 2 

 

1. Initialize the iteration index, i, and the variables Ta and   

(1a) Set i = 0. Go to step 1b. 

(1b) Ta
i = 1.05T0. Go to step 1c. 

(1c) Calculate i with Eq. 5. Go to step 2. 

2. Evaluate elements of the function vector, F11 and F12 [Eq. 15] at x = xi, with the lefthand 

side expressions of Eqs. 11 and 12. Go to step 3. 

3. Calculate elements of the coefficient matrix, i [Eq. 16], at x = xi, with Eqs. 17 and 18. Go to 

step 4. 
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4. Calculate the (i+1)th incremental change in the variable vector, x(i+1), by solving Eq. 13 

with a suitable method (e.g., Creamer’s rule, Watkins 2010). Go to step 5. 

5. Convergence test:  

5a. If Ta
(i+1)  0.001K, then go to step 5b. On the other hand, if Ta

(i+1) > 0.001K, then go to   

      step 7. 

5b. If (i+1)  0.00001KPa/K, then go to step 6. If, on the other hand, (i+1) >  

      0.00001KPa/K, then go to step 7. 

6.  The iteration has converged and the solution is : Ta = Ta
i and  = i . Go to step 11. 

7. Update variables: 

 

(7a) 𝑇𝑎
(𝑖+1) = 𝑇𝑎

𝑖 + 𝛿𝑇𝑎
(𝑖+1)                                                                                         (20) 

 

Go to step 7b. 

(7b) ∆(𝑖+1)= ∆𝑖 + 𝛿∆(𝑖+1)                                                                                           (21)   

 

Go to step 8. 

8. Set i = i+1, proceed to step 9. 

9. If i  MaxIteration, then go to step 2. If, on the other hand, i > MaxIteration then go to  

step 10. 

10. Iterative solution of Eqs. 3 and 4 for Ta and  failed to converge. Go to step 12.  

11. Calculate 𝓁f, Ef, and qf following the description in step 11, under model 1. Go to step 12. 

12. End computation. 
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4.4.3. Iterative solution of the combined equation with the Newton method, model 3 

 

4.4.3.a. Equations 

With this approach, Eqs. 3 and 4 are combined into a single nonlinear equation with Ta as the 

variable  

𝑇𝑎 − 𝑇0 −
𝛾∗𝑟𝑎𝑄𝑓𝜍

𝜌𝑐𝑝(𝜙 + 𝛾∗𝜍)
+ 𝜍

𝑒𝑠(𝑇0) − 𝑒0
𝜙 + 𝛾∗𝜍

= 0                                                         (22) 

Equation 22 is obtained by substituting an expression for ∆  

 

Δ =  
𝜙

𝜍
                                                                                                                               (23) 

 

into Eq. 3. Thus, in Eq. 23  

 

𝜙 =  𝑒𝑎(𝑇𝑎) − 𝑒𝑠(𝑇0)   𝑎𝑛𝑑  𝜍 = 𝑇𝑎 − 𝑇0                                                                  (24) 

 

Noting that  and 𝜍 are both functions of Ta, it can be observed that Eq. 22 is a nonlinear 

equation in Ta and is solved here iteratively with the Newton method. Accordingly, in each 

iterative step, say at the ith iteration, the (i+1)th incremental change in Ta, Ta
(i+1), is calculated 

with Eq. 25 

𝛿𝑇𝑎
(𝑖+1) = −

𝐹(𝑇𝑎
𝑖)

𝑑𝐹(𝑇𝑎)
𝑑𝑇𝑎

|
𝑇𝑎=𝑇𝑎

𝑖

                                                                                          (25)                 

 

where F(Ta) is the lefthand side of Eq. 22 evaluated at Ta = Ta
(i+1) and  

𝑑𝐹(𝑇𝑎)

𝑑𝑇𝑎
|
𝑇𝑎=𝑇𝑎

𝑖
= 1.0 − (

𝛾∗ 𝑟𝑎 𝑄𝑓 

𝜌𝑐𝑝
− 𝑒𝑠(𝑇0) + 𝑒0) 

(𝜙𝑖−4093.0 𝜍𝑖 
𝑒𝑠(𝑇𝑎

𝑖 )

(𝑇𝑎
𝑖 −36.0)

2)

(𝜙𝑖+𝛾∗𝜍𝑖)
2               (26)  

 



 

64 
 

Computational procedure, model 3 

 

1. Initialize the iteration index, i, and variable, Ta.  

(1a) Set the iteration index, i, to 0. Go to step 1b. 

(1b) Set Ta
i = 1.05T0. Go to step 2. 

2. Calculate F(Ta
i) with the righthand side expression of Eq. 22. Go to step 3. 

3. Calculate (dF(Ta)/dTa)|Ta =Ta
i with Eq. 26. Go to step 4. 

4. Calculate the (i+1)th incremental change in the variable vector, Ta
(i+1), with Eq. 25. Go to 

step 5. 

5. Convergence test:  If Ta
(i+1)  0.001K, then go to step 6. On the other hand, if Ta

(i+1) > 

0.001K, then go to step 7. 

6. The iteration has converged and the solution is Ta = Ta
i. Go to step 11. 

7. Update variable: set 𝑇𝑎
(𝑖+1) = 𝑇𝑎

𝑖 + 𝛿𝑇𝑎
(𝑖+1)

. Go to step 8. 

8. Set i = i+1, proceed to step 9. 

9. If i  MaxIteration, then go to step 2. If, on the other hand, i > MaxIteration then go to step 

10. 

10. Iterative solution of Eq. 22 failed to converge. Go to step 12.  

11. Calculate ∆ with Eq. 5 as a function Ta computed in step 6 above and calculate 𝓁f, Ef, and qf  

following step 11 described under model 1. Go to step 12.  

12. End computation. 
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4.4.4. Simultaneous iterative solution of the modified forms of Eqs. 1 to 3 with the Newton  

          method, model 4 

 

4.4.4.a.  Equations 

 

With this approach, a system consisting of modified forms of Eqs. 1 to 3 are solved 

simultaneously with the Newton method. The modified equations given in the form of F(x) = 0 

are 

 

𝓁𝑓 −
𝜙𝑄𝑓

𝜙 +  𝛾∗𝜍
−   𝑐𝑝𝜍

𝑒𝑠(𝑇0) − 𝑒0
 (𝜙 + 𝛾∗𝜍)𝑟𝑎

= 0                                                                (27)    

 

𝑞𝑓 −  
𝜍𝛾∗𝑄𝑓

𝜙 + 𝛾∗𝜍
+   𝑐𝑝𝜍

𝑒𝑠(𝑇0) − 𝑒0
 (𝜙 + 𝛾∗𝜍)𝑟𝑎

 = 0                                                               (28) 

 

𝑇𝑎 − 𝑇0 −
𝜍𝛾∗𝑟𝑎𝑄𝑓

𝑐𝑝(𝜙 + 𝛾∗𝜍)
+ 𝜍

𝑒𝑠(𝑇0) − 𝑒0
𝜙 + 𝛾∗𝜍

 = 0                                                        (29) 

 

Note that Eqs. 27 to 29 are obtained by substituting an expression for  (Eq. 23) into Eqs. 1 to 3.  

Considering that  and 𝜍 (Eq. 24) are functions of Ta, it can be observed that Eqs. 27 to 

29 constitute a nonlinear system of equations in the variables 𝓁f , qf, and Ta. Accordingly, in each 

Newton iteration, say in the (i+1)th iteration, a system of linear equations of the form given in 

Eq. 13 is solved simultaneously. However, compared to model 2, which involves a pair of 

equations with two variables, the system applicable to model 4 consists of three equations with 

three variables. Thus, the corresponding residuals, F(xi), and variable, xi, vectors are given as 

𝑭(𝒙𝑖) =

(

 
 
𝐹27(𝒙)|𝒙=𝒙𝒊

𝐹28(𝒙)|𝒙=𝒙𝒊

𝐹29(𝒙)|𝒙=𝒙𝒊
)

 
 
    𝑎𝑛𝑑    𝒙𝒊 =

(

 

𝓁𝑓
𝑖

𝑞𝑓
𝑖

𝑇𝑎
𝑖
)

                                                             (30) 
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where F27(x)|x = x
i, F28(x)|x = x

i, and F29(x)|x = x
i are the expressions on the lefthand sides of Eqs. 

27, 28, and 29, respectively, evaluated at x = xi. 𝓁f 
i, qf 

i, and Ta
i are the latent heat, sensible heat, 

and final air temperature values at the ith iteration, respectively. 

 

 The coefficient matrix, , is given as  

 

𝜦(𝒙𝒊) =

(

 
 

[𝛁𝐹27(𝒙)|𝒙=𝒙𝒊]
𝑻

   [𝛁𝐹28(𝒙)|𝒙=𝒙𝒊]
𝑻

      [𝛁𝐹29(𝑥)|𝒙=𝒙𝒊]
𝑻

)

 
 
                                                                                  (31)  

 

where [∇𝐹27(𝒙)|𝒙= 𝒙𝒊]
𝑻
, [∇𝐹28(𝒙)|𝒙= 𝒙𝒊]

𝑻
, and [∇𝐹29(𝒙)|𝒙= 𝒙𝒊]

𝑻
 are the transposes of the 

gradient vectors of Eqs. 27, 28, and 29, respectively, evaluated at x = xi, and are expressed as  

 

[∇𝐹27(𝒙)|𝒙= 𝒙𝒊]
𝑻
=   

(

 
 
 
 
 
 

1.0, 0.0,

 (4093.0 𝜍𝑖 
𝑒𝑠(𝑇𝑎

𝑖 )

(𝑇𝑎
𝑖 −36.0)

2)(
𝜌𝑐𝑝 

𝑟𝑎
(𝑒𝑠(𝑇0)−𝑒0) − 𝛾

∗𝑄𝑓)

+𝜙( 𝛾∗𝑄𝑓− 
𝜌𝑐𝑝 

𝑟𝑎
(𝑒𝑠(𝑇0)−𝑒0))

(𝜙𝑖+𝛾∗𝜍𝑖)
2

)

 
 
 
 
 
 

           (32)    

[∇𝐹28(𝒙)|𝒙= 𝒙𝒊]
𝑻
=

(

 
 
0.0, 1.0, (

𝜌𝑐𝑝 

𝑟𝑎
(𝑒𝑠(𝑇0) − 𝑒0) − 𝛾

∗𝑄𝑓)

  (𝜙𝑖 −  4093.0 𝜍𝑖 
𝑒𝑠(𝑇𝑎

𝑖 )

(𝑇𝑎
𝑖 −36.0)

2)

(𝜙𝑖+𝛾∗𝜍𝑖)
2

)

 
 
     (33)    

[∇𝐹29(𝒙)|𝒙= 𝒙𝒊]
𝑻
=

(

 
 
0.0, 0.0, 1.0 + (𝑒𝑠(𝑇0) − 𝑒0 −

 𝛾∗𝑟𝑎𝑄𝑓

𝜌𝑐𝑝
)

 (𝜙𝑖 − 4093.0 𝜍𝑖 
𝑒𝑠(𝑇𝑎

𝑖 )

(𝑇𝑎
𝑖 −36.0)

2)

(𝜙𝑖+𝛾∗𝜍𝑖)
2

)

 
 
   (34)    

 

Furthermore, 𝛿𝒙(𝒊+𝟏) is the (i+1)th incremental change in the variable vector, given as 
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𝛿𝒙(𝒊+𝟏) =

(

 
 

𝛿𝓁𝑓
(𝑖+1)

𝛿𝑞𝑓
(𝑖+1)

   𝛿𝑇𝑎
(𝑖+1)

)

 
 
                                                                                                      (35) 

 

where 𝓁f  
(i+1), qf 

(i+1), and Ta 
(i+1) are the (i+1)th incremental change in the latent heat, sensible 

heat, and final air temperature, respectively, defined in accordance with the form given in Eq. 8.  

 

4.4.4.b.  Iterative algorithm for computing Ta, 𝓁f, and q f, model 4 

 

1. Initialize the iteration index, i, and variables   

(1a) Set i = 0. Go to step 1b. 

(1b) Set Ta
i = 1.05T0. Go to step 1c. 

(1c) Set 𝓁f  
i = 𝓁f(Ta

i), Eq. 27. Go to step 1d.  

(1d) Set qf  
i = qf(Ta

i), Eq. 28. Go to step 2.   

2. Evaluate elements of the function vector, Eq. 30, at x = xi with Eqs. 27-29. Go to step 3. 

3. Calculate elements of the coefficient matrix, i [Eq. 31], at x = xi, with Eqs. 32 to 34. Go to 

step 4. 

4. Calculate the (i+1)th incremental change in the variable vector, x(i+1), by solving a form of 

Eq. 13 applicable to model 4 with a suitable method (e.g., Watkins 2010). Go to step 5. 

5. Convergence test:  

      (5a) If 𝓁f
(i+1) 0.001W/m2, then go to step 5b. If, on the other hand, 𝓁f

(i+1) >0.001W/m2,  

              then go to step 8. 

 

       (5b) If qf
(i+1)  0.001W/m2, then go to step 5c. If, on the other hand, qf

(i+1) > 0.001W/m2,  

              then go to step 8.  
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(5a) If Ta
(i+1)  0.001K, then go to step 6. On the other hand, if Ta

(i+1) > 0.001K, then go to   

             step 8. 

6. The iteration has converged and the solution is: Ta = Ta
i, 𝓁f  = 𝓁f  

i, and qf  = qf  
i. Go to step 7. 

7. Calculate: 

(7a)  with Eq. 5 based on the Ta value given in step 6. Go to step 7b. 

(7b) Ef  with Eq. 10. Go to step 12. 

8. Update variables 

      𝑇𝑎
(𝑖+1) = 𝑇𝑎

𝑖 + 𝛿𝑇𝑎
(𝑖+1)                                                                                               (36) 

 

      𝓁𝑓
(𝑖+1) = 𝓁𝑓

𝑖 + 𝛿𝓁𝑓
(𝑖+1)                                                                                                 (37) 

      𝑞𝑓
(𝑖+1) = 𝑞𝑓

𝑖 + 𝛿𝑞𝑓
(𝑖+1)                                                                                                (38) 

       

Go to step 9. 

9. Set i = i+1, proceed to step 10. 

10. If i  MaxIteration, then go to step 2. If, on the other hand, i > MaxIteration then go to  

step 11. 

11. Iterative solution of Eqs. 27 to 29 failed to converge. Go to step 12.  

12. End computation. 

 

 

4.5.  Model evaluation  

 

Evaluation of the alternative numerical solutions was focused on assessing the soundness of the 

mathematical formulation and programmatic implementation of the numerical algorithms of the 

alternative models (models 1, 2, 3, and 4). It was conducted based on comparison of the variable 
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estimates computed with these models to those reported by McArthur (1990), considered here a 

benchmark solution. 

 

4.5.1. Data description  

 

Three data sets obtained from the study presented by McArthur (1990) were used in model 

evaluation. These data are summarized in Table 1 under the labels of data set 1, 2, and 3. Each 

data set of McArthur considers a wet surface with a canopy resistance of 0s/m, resistance to heat 

transfer, rh, of 100s/m, and a relatively strong sunshine with net external heat flux into the air of 

500 W/m2. The vapor pressure deficit was set to zero for each data set and the measured air 

temperatures were 273K for data set 1, 293K for data set 2, and 313K for data set 3. In the 

current study, the resistance to heat transfer, rh, was set equal to the aerodynamic resistance, ra, 

and the canopy resistance parameter was set equal to the bulk surface resistance parameter, rs, of 

the FAO Penman–Monteith equation (Allen et al. 1998). 

 

4.5.2. Summary of results reported by McArthur (1990)  

 

The results reported by McArthur (1990) show that the differences in the estimates of ℓf  obtained 

with the iterative approach and those calculated with the conventional model vary between about 

1.5% (data set 3) and 40.0% (data set 1) of the values obtained with the conventional approach. 

Although not reported by McArthur, it can be shown that the residuals between estimates of Ta 

presented by McArthur and those of the conventional model range from 0.3% (data set 3) to 

1.9% (data set 1) of those calculated with the conventional model. The corresponding differences  
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Table 1. Weather, crop, and related evaporation parameters   

Variable/parameter name Unit 

McArthur’s  data sets Additional data sets 

Data 

set 1 

Data 

set 2 

Data 

set 3 

Data 

set 4 

Data 

set 5 

Data 

set 6 

Data  

Set 7 

Measured air temperature, 

T0  
K 273 293 313 278 303 308 293 

Psychrometer constant,   KPa/K 0.066 0.066 0.066 0.066 0.066 

External heat flux, Qf W/m2 500 300 420 650 400 

Air density,  Kg/m3 1.204 1.204 1.204 1.204 1.204 

Heat capacity of air at 

constant pressure, cp 
J/Kg 1005 1005 1005 1005 1005 

Vapor pressure, e0 (*) KPa 0.611 2.343 7.398 0.5 3.504 5.2 0.243 

Wind velocity measurement 

height, zm (**) 
m - 2 2 2.5 2 

Wind speed at 

measurement, u(z) (**) 
m/s - 1 1.2 3.5 3 

Vapor pressure 

measurement height, zh (**) 
m - 2 2 2.5 2 

Roughness length, 

momentum transfer, zom (**) 
m - 0.0738 0.0148 0.0431 0.0923 

Roughness length, heat and 

vapor transfer, zoh
(**) 

m - 0.0074 0.0015 0.0043 0.0092 

Zero plane displacement 

height, d(**) 
m - 0.400 0.080 0.233 0.500 

Crop height, h(**) 
m 

 
- 0.6 0.12 0.35 0.75 

Bulk surface resistance, rs  s/m 0 40 100 120 60 

Aerodynamic resistance, ra 
(***) 

s/m 100 - - - - 

(*) For McArthur’s data sets (i.e., data sets 1 to 3), the vapor pressures correspond to saturated conditions for the 

respective temperatures.  
(**)For McArthur’s data sets, the resistance to heat transfer (which is the same as aerodynamic resistance) is set to 

100s/m. Thus, the weather, crop, and other parameters required for the determination of the aerodynamic resistance 

are not specified.   
(***)For the additional data sets (data sets 4 to 7) the aerodynamic resistance is not specified at the input, because it is 

calculated as a function of the weather, crop, and other parameters specified at the input 

 

 

 



 

71 
 

between estimates of ∆ obtained with the two methods vary between 12.0%  (data set 3) and 

79.3% (data set 1) of those computed with the conventional approach. McArthur’s solution 

(obtained with the sequential function-evaluation scheme) will now be compared to the solutions 

produced by the alternative models, developed in the current study. 

 

4.5.3. Comparison of variable estimates obtained with the alternative models and  

          McArthur’s model  

 

The computational procedures newly proposed here (i.e., model 2, 3, and 4) and the 

programmatic implementation of McArthur’s approach (referred here as model 1) are evaluated 

by comparing estimates of ℓf, qf, Ef, Ta, and ∆ computed with each of the models with those 

reported by McArthur (1990). The variable estimates obtained with each model and those 

reported by McArthur are shown in Tables 2a and 2b. In addition, a summary of the percent 

absolute residuals between the estimates obtained with each of the alternative models and those 

reported by McArthur are presented in Tables 2a and 2b. Although McArthur did not provide 

data on qf and Ef, qf and Ef  values are included in Tables 2a and 2b for completeness and were 

calculated with Eqs. 2 and 10 based on the  and ℓf values reported by McArthur (1990).  

The data reported by McArthur shows that 𝓁f varies between a minimum of 274.0 (data 

set 1) and a maximum of 435.0 W/m2 (data set 3), Table 2a. The final air temperature (which is 

referred to as surface temperature by McArthur) ranges between 290.6 and 318.0K, while 

estimates of ∆ vary from 0.0796 (data set 1) to 0.442KPa/K (data set 3). Furthermore, a cursory 

look at Tables 2a and 2b show that for each data set the variable estimates obtained with the four 

models are practically identical. Thus, subsequent discussion on the variable estimates will make 

no distinction between outputs of alternative models.   
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Table 2a. Comparison of variable estimates computed with each of models 1 and 2 with those   

     presented by McArthur (1990), McArthur’s data sets 

 (*) McArthur (1990) did not provide estimates of sensible heat and evaporation fluxes. The values presented here 

were calculated, for completeness, with Eq. 2 and 10 based on the  values presented by McArthur. 

(**) For each variable and data set combination, percent residuals were calculated with:  

 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  
|𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 1 𝑜𝑟 2 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑏𝑦 𝑀𝑐𝐴𝑟𝑡ℎ𝑢𝑟| 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑏𝑦 𝑀𝑐𝐴𝑟𝑡ℎ𝑢𝑟
100 

 

(***) Min, Max, and Av are the minimum, maximum, and average percent absolute residuals, respectively 

 

 

 

 

Variable name  Unit 

Model outputs  

McArthur’s model  Model 1 Model 2 

Data 

set 1 

Data 

set 2 

Data 

set 3 

Data 

set 1 

Data 

set 2 

Data 

set 3 

Data 

set 1 

Data 

set 2 

Data 

set 3 

Latent heat 

flux, ℓf W/m2 274.0 372.0 435.0 277.1 373.0 435.6 277.1 373.0 435.6 

Sensible heat 

flux, qf
(*) W/m2 226.6 128.4 65.0 222.9 127.0 64.4 222.9 127.0 64.4 

Evaporation 

flux, Ef  (*) mm/day 9.7 13.1 15.3 9.8 13.1 15.4 9.8 13.1 15.4 

Final air 

temperature, Ta K 290.6 303.0 318.0 291.4 303.5 318.3 291.4 303.5 318.3 

Saturation 

vapor pressure  

related slope 

parameter, ∆ 

KPa/K 0.0796 0.191 0.442 0.0821 0.1938 0.4465 0.0821 0.1938 0.4465 

Percent absolute residuals (***) 

Variable name  Unit - 

between McArthur’s model 

and model 1 

between McArthur’s 

model and model 2 

Min Max Av Min Max Av 

Latent heat 

flux, ℓf %(**) - 0.140 1.146 0.515 0.140 1.146 0.515 

Sensible heat 

flux, qf 
(*) % - 0.876 1.672 1.204 0.876 1.671 1.204 

Evaporation 

flux, Ef (*) % - 0.140 1.146 0.515 0.140 1.151 0.517 

Final air 

temperature, Ta % - 0.101 0.281 0.182 0.101 0.281 0.182 

Saturation 

vapor pressure  

related slope 

parameter, ∆ 

% - 1.016 3.110 1.858 1.016 3.109 1.858 
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Table 2b. Comparison of variable estimates computed with each of model 3 and 4 with those  

                 presented by McArthur (1990), McArthur’s data sets 

 (*) McArthur (1990) did not provide estimates of sensible heat and evaporation fluxes. The values presented 

here were calculated, for completeness, with Eq. 2 and 10 based on the  values presented by McArthur.  
(**) For each variable and data set combination, percent residuals were calculated with  

 

      𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  
|𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 1 𝑜𝑟  2 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑖𝑚𝑎𝑡𝑒 𝑏𝑦 𝑀𝑐𝐴𝑟𝑡ℎ𝑢𝑟| 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑏𝑦 𝑀𝑐𝐴𝑟𝑡ℎ𝑢𝑟
100 

 

(***) Min, Max, and Av are the minimum, maximum, and average percent absolute residuals, respectively 

 

 

Variable name  Unit 

Model outputs 

McArthur’s models  Model 3 Model 4 

Data 

set 1 

Data 

set 2 

Data 

set 3 

Data 

set 1 

Data 

set 2 

Data 

set 3 

Data 

set 1 

Data 

set 2 

Data 

set 3 

Latent heat 

flux, ℓf W/m2 274.0 372.0 435.0 277.1 373.0 435.6 277.2 372.9 435.6 

Sensible heat 

flux, qf 
(*) W/m2 226.6 128.4 65.0 222.9 127.0 64.4 222.8 127.1 64.4 

Evaporation 

flux, Ef (*) mm/day 9.7 13.1 15.3 9.8 13.2 15.4 9.8 13.1 15.4 

Final air 

temperature, Ta K 290.6 303.0 318.0 291.4 303.5 318.3 291.4 303.5 318.3 

Saturation 

vapor pressure  

related slope 

parameter, ∆ 

KPa/K 0.0796 0.191 0.442 0.0821 0.1938 0.4465 0.0821 0.1938 0.4465 

Percent absolute residuals (***) 

 Variable name  Unit - 

between McArthur’s model 

and model 3 

between McArthur’s 

model and model 4 

Min Max Av Min Max Av 

Latent heat 

flux, ℓf %(**) - 0.140 1.146 0.515 0.134 1.177 0.519 

Sensible heat 

flux, qf(*) % - 0.876 1.671 1.204 0.842 1.705 1.193 

Evaporation 

flux, Ef  (*) % - 0.140 1.146 0.515 0.134 1.177 0.519 

Final air 

temperature, Ta % - 0.101 0.281 0.182 0.102 0.279 0.182 

Saturation 

vapor pressure  

related slope 

parameter, ∆ 

% - 1.016 3.109 1.858 1.020 3.087 1.855 
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Accordingly, it can be observed from Tables 2a and 2b that estimates of 𝓁f obtained with the 

models, overall, vary between a minimum of about 277.1W/m2 (data set 1) and a maximum of 

435.6W/m2 (data set 3) and those of Ef  ranges from 9.8 to 15.4mm. On the other hand, estimates 

of Ta  vary between a minimum of 291.4W/m2 (data set 1) and a maximum of318.3W/m2 (data 

set 3) and  ranges from 0.0821 (data set 1) to 0.4465KPa/K (data set 3). By comparison, 

sensible heat, qf, vary between a minimum of 64.4W/m2 (data set 3) and a maximum of 

222.9W/m2 (data set 1). 

A summary of the absolute residuals between variable estimates obtained with each of 

the models and those reported by McArthur are given in Tables 2a and 2b. However, in order to 

allow for a more direct visual comparison, the residuals are also plotted in grouped bar charts, 

Figure 1a for models 1 and 2 and Figure 1b for models 3 and 4. A closer look at Figures 1a and 

1b (and Tables 2a and 2b) shows that the maximum absolute residual between the variable 

estimates obtained with the alternative models and those of McArthur occur for  and it is about 

3.1% and the average is 1.9%. The variable with the second largest residuals is the sensible heat 

flux, with a maximum of about 1.7%, the average value being 1.2%. On the other hand, the 

smallest residuals between the parameter estimates obtained with the proposed models and those 

of McArthur was obtained for the final air temperature, the maximum being about 0.3% and the  

average 0.2%. The latent heat and evaporation fluxes fall somewhere in between with a 

maximum absolute residual of about 1.2% and an average value of 0.5%.  

  Overall, the percent absolute residuals summarized in Figures 1a and 1b and Tables 2a 

and 2b suggest that the variable estimates obtained with the proposed models and those reported 

by McArthur are generally close. Estimates for Ta, and the more important variables of latent 

heat flux and evaporation flux, are all on the average within about 0.5% of those reported by  
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Figure 1. Absolute residuals between variable estimates obtained with (a) Models 1 and 2 and   

                McArthur’s model and (b) Models 3 and 4 and McArthur’s model  (McArthur’s data set) 
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McArthur. However, the average residuals for  and qf are greater than 1.0% (the maximum 

being 3.1%), hence slightly larger than what could be considered sufficiently small when 

comparing outputs of numerical solutions. Perhaps, differences in the programmatic 

implementation of the models (particularly model 1) in the current study and the specifics of 

(what appears to be a manual) calculation procedure used by McArthur (1990) may account for 

the slightly larger differences than would be desirable. Given that models 1, 2, 3, and 4 produce 

essentially identical outputs (Table 2), all the models were considered for further analysis.  

 

4.6. Model selection 

 

 

Results of intercomparison of models (conducted based on all the data sets given in Table 1) 

combined with considerations of such criteria as numerical efficiency, robustness, and simplicity 

were used in the selection of a model for further analysis, among the four alternatives. 

 

4.6.1. Data description 

 

Four more hypothetical data sets (labeled as additional data sets in Table 1), covering a wider 

range of natural evaporation scenarios are used in model selection. For these data sets, the vapor 

pressure deficits range between 0.373 to 2.1 kPa, which represent relatively humid and rather dry 

air conditions, respectively. The measured air temperature ranges from 278 to 308 K and the 

external heat flux varies between 300 and 650 W/m2. Note that for the additional data sets, the 

aerodynamic resistance values are not specified in Table 1, because they are not inputs to the 

model. Instead, they were computed as a function of wind speed and roughness lengths and 

zero plane displacement, both calculated as a function of crop height (Table 1) following the 

approach described by Allen et al. (1998). Hence, they are summarized in an output data table. 
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4.6.2. Comparison of the outputs of the alternative models based on additional data  

 

Evaporation variable estimates computed with each of the alternative models and the 

corresponding percent absolute residuals for all data sets are presented in Tables 3a and 3b, 

respectively. Note that, for convenience, the model outputs section of Table 3a simply replicates 

the data presented in Tables 2a and 2b (i.e., variable estimates obtained with models 1, 2, 3, and 

4 for the McArthur data sets) in a different format. The percent absolute residuals section of 

Table 3a, on the other hand, presents new data. More discussion on the data will be presented 

shortly. Before that, a summary of the absolute residuals between the variable estimates obtained 

with model 1, 2, 3, and 4 (Tables 3a and 3b) will be highlighted. 

A close look at the absolute residuals section of Tables 3a and 3b suggests that the 

variable estimates obtained with the models are essentially identical. However, in order to allow 

for a more direct visual comparison, a summary of the residuals covering all the data sets are 

presented in a group bar chart (Figure 2). As can be noted from Figure 2 (and also from Tables 

3a and 3b), the percent absolute residuals between the variable estimates obtained with model 2 

and those of mode 1 and between model 3 and those of model 1 are within 0.005% of those 

computed with model 1. The maximum percent absolute residual between variable estimates 

obtained with model 4 and 1 is 0.09% of those computed with model 1 and it is associated with 

estimates of sensible heat flux. Furthermore, Figure 2 shows that the residuals for all the other 

variables and across all the data sets are less than 0.06%.  

The fact that the variable estimates obtained with the proposed models are essentially 

identical, across all the data sets, suggests that these algorithms can be considered equally 

acceptable.  
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Table 3a. Comparison of variable estimates computed with each of models 2, 3, and 4 with those obtained using model 1,  McArthur’s  data sets  

(*) For each variable and data set combination percent absolute residuals were calculated with  

 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  
|𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 2, 3, 𝑜𝑟 4 −  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 1| 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 1 
100 

 
(**) Min, Max, Av are the minimum, maximum, and average percent absolute residuals, respectively. 

 

 

Variable name Unit 

Model outputs 

Model 1 Model 2 Model 3 Model 4 

Data  

set 1 

Data  

set 2 

Data  

set 3 

Data  

set 1 

Data  

set 2 

Data  

set 3 

Data  

set 1 

Data  

set 2 

Data  

set 3 

Data  

set 1 

Data  

set 2 

Data  

set 3 

Latent heat flux, ℓf   W/m2 277.1 373.0 435.6 277.1 373.0 435.6 277.1 373.0 435.6 277.2 372.9 735.6 

Sensible heat, qf   W/m2 222.9 127.0 64.4 222.9 127.0 64.4 222.9 127.0 64.4 222.8 127.1 64.4 

Evaporation flux, 

Ef (*) 
mm/day 9.8 13.1 15.4 9.8 13.1 15.4 9.8 13.1 15.4 9.8 13.1 15.4 

Final air 

temperature, Ta 
K 291.4 303.5 318.3 291.4 303.5 318.3 291.4 303.5 318.3 291.4 303.5 318.3 

Saturation vapor 

pressure  related 

slope parameter, ∆ 

KPa/K 0.0821 0.1938 0.4465 0.0821 0.1938 0.4465 0.0821 0.1938 0.4465 0.0821 0.1938 0.4465 

 

Variable name Unit - 

Percent absolute residuals between estimates obtained with model 1 and those calculated with 

model 2, 3, and 4 (**) 

           Models 1 and 2 Models 1 and 3 Models  1 and 4 

Min Max Av Min Max Av Min Max Av 

Latent heat flux, ℓf (%) (*)  0.0000 0.0005 0.0002 0.0000 0.0005 0.0002 0.006 0.030 0.016 

Sensible heat flux, 

qf 
(*) 

(%) - 
0.0001 0.0006 0.0004 0.0000 0.0006 0.0003 0.033 0.034 0.033 

Evaporation flux, 

Ef (*) 

(%) - 
0.0000 0.0046 0.0016 0.0000 0.0005 0.0002 0.006 0.030 0.016 

Final air 

temperature, Ta 

(%) - 
0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.001 0.002 0.001 

Saturation vapor 

pressure  related 

slope parameter, ∆ 

(%) - 
0.0001 0.0011 0.0006 0.0000 0.0011 0.0005 0.004 0.022 0.012 
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Table 3b. Comparison of variable estimates computed with each of models 2, 3, and 4 with those obtained using model 1, additional  

                 data sets 

 (*) For each variable and data set combination percent absolute residuals were calculated with:  

 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  
|𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 2, 3, 𝑜𝑟 4 −  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 1| 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 1 
100 

 
(**) Min, Max, Av are the minimum, maximum, and average percent absolute residuals, respectively.  

 

 

Variable name 

 

 

Unit 

Model outputs  

Model 1 Model 2 Model 3 Model 4 

Data  

set 4 

Data  

set 5 

Data  

set 6 

Data  

set 7 

Data  

set 4 

Data  

set 5 

Data  

set 6 

Data  

set 7 

Data  

set 4 

Data  

set 5 

Data  

set 6 

Data  

set 7 

Data  

set 4 

Data  

set 5 

Data  

set 6 

Data  

set 7 

Latent heat flux, 

ℓf 
W/m2 191.3 339.8 520.5 683.3 191.3 339.8 520.5 683.3 191.3 339.8 520.5 683.3 191.2 339.8 520.5 683.2 

Sensible heat 

flux, qf 
(*) 

W/m2 108.7 80.2 129.5 -283.3 108.7 80.2 129.5 -283.3 108.7 80.2 129.5 -283.3 108.8 80.2 129.5 -283.2 

Evaporation 

flux, Ef (*) 
mm/day 6.7 12.0 18.3 24.1 6.7 12.0 18.3 24.1 6.7 12.0 18.3 24.1 6.7 12.0 18.3 24.1 

Final air 

temperature, Ta 
K 286.8 314.5 312.5 286.4 286.8 314.5 312.5 286.4 286.8 314.5 312.5 286.4 286.9 314.5 312.5 286.4 

Saturation vapor 

pressure  related 

slope parameter, ∆ 

KPa/K 0.0805 0.3265 0.3478 0.1217 0.0805 0.3265 0.3478 0.1217 0.0805 0.3265 0.3478 0.1217 0.0805 0.3265 0.3478 0.1217 

 

  

- 

 

Percent absolute residuals between estimates obtained with model 1 and those calculated with model 2, 3,  

and 4 (**) 

Models 1 and  2 Models 1 and 3 Models 1 and  4 
Min Max Av Min Max Av Min Max Av 

Latent heat flux, 

ℓf 
(%) (*) 

- 

 
0.0000 0.0002 0.0001 0.0000 0.0004 0.0002 0.0059 0.0541 0.0206 

Sensible heat 

flux, qf 
(*) 

(%) - 0.0000 0.0004 0.0002 0.0001 0.0007 0.0003 0.0218 0.0915 0.0437 

Evaporation 

flux, Ef (*) 
(%) - 0.0000 0.0002 0.0001 0.0000 0.0004 0.0002 0.0059 0.0541 0.0206 

Final air 

temperature, Ta 
(%) - 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000 0.0003 0.0028 0.0012 

Saturation vapor 

pressure  related 

slope parameter, 

∆ 

(%) - 0.0000 0.0007 0.0003 0.0001 0.0012 0.0006 0.0025 0.0271 0.0107 
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Figure 2. Absolute residuals between variable estimates computed with each of models 2,  

               3, and 4 and those obtained with model 1 (all data sets, Table 1)  

 

4.6.3. Numerical robustness, efficiency, and simplicity 

 

The results show that each of the numerical algorithms, presented here, were able to solve all the 

evaporation problems (i.e., data sets) considered. This implies that all the models presented here 

(i.e., model 1, 2, 3, and 4) are equally robust, although with varying degrees of efficiency. A 

close look at the iteration data shows that model 1 required 5 to 9 iterations to converge to the 

solutions for all the problems considered here, while model 2 converged to the solution within 2 

to 4 iterations. Model 3, on the other hand, obtained the solution to all the seven data sets in 2 
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169 and 1033 to obtain the solutions. While these differences in apparent numerical efficiency 

may be significant in terms of CPU time, since the problem concerns the solution of small 

system of equations (at most three equations in three variables), the actual runtimes for each of 

these models are nearly indistinguishable and are about a few seconds in a regular PC.      

The preceding observations suggest that from the perspectives of accuracy and numerical 

robustness and efficiency (in the sense of required model runtime), each of the models represent 

a comparable alternative to any of the other alternatives for estimating natural evaporation from a 

cropped field. However, the fact that model 1 is based on function evaluation implies that its 

implementation does not require any specialized numerical method. By comparison, models 2, 3, 

and 4 use Newton iteration method to solve a minimum of 1 and a maximum of 3 nonlinear 

equations with 1 to 3 variables, respectively. The implication is that model 1 is simpler than the 

other models, both conceptually and in terms of its numerical formulation and programmatic 

implementation, which is an advantage. Thus, model 1 was considered for further analysis, 

which involves comparison of model 1 with the conventional model. Before that, however, a 

discussion on the structure of the Penman-Monteith equations and its effect on numerical 

solutions will be presented.    

 

4.6.4. An observation on the structure of the equations and its effect on numerical solutions  

 

Equations 1 to 4 are a coupled system of equations and hence in principle the complete set needs 

to be solved simultaneously. However, results presented earlier show that solutions produced by 

models 1, 2, and 3 (representing simpler formulation of the evaporation problem) are as accurate 

as the solutions obtained with simultaneous iterative solution of the complete set, model 4. A 

close look at the structure of Eqs. 1 to 4 reveals a potential explanation for this apparent 
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incompatibility between observations made on numerical outputs computed with models 1, 2, 3, 

and 4, on one hand, and basic mathematical requirements, on the other.  

 A look at Eqs. 1 and 2 shows that these equations have one variable each (ℓf in the case of 

Eq. 1 and qf in the case of Eq. 2) that do not appear in any of the other equations. Furthermore, 

Eqs. 1 and 2 share only the variable ∆ with the other equations and among themselves as well. 

This observation suggests that in their current form, Eqs. 1 and 2 are not as strongly coupled to 

Eqs 3 and 4 and with each other as well, as for instance Eq. 3 is to that of Eq. 4 or vice-versa 

(where both equations are functions of Ta and ). As noted earlier, this observation points to the 

possibility that a simpler formulation, than the iterative solution of the complete set, in which 

Eqs. 3 and 4 are decoupled from Eqs. 1 and 2 may yield sufficiently accurate, but more efficient 

and robust, solutions. 

In fact, a close examination of the algorithm of the simpler models (models 1, 2, and 3) 

provides evidence that directly support this inference. A look at Eqs. 1 to 4 reveals that, in any 

given iteration, not only, 𝓁f, (may note an earlier related discussion) but also qf can be calculated 

directly based on the current value of . However, the 𝓁f  and qf  estimates obtained as such 

cannot be substituted back into Eqs. 3 and 4 to have an effect on the Ta and  values computed in 

subsequent iterations. Neither the current value of 𝓁f  can be substituted into Eq. 2 to have an 

effect on the estimates of qf in subsequent iterations and vice-versa. In other words, evaluation of 

𝓁f  and qf  in any given iteration of the alternative models does not contribute to improvements in 

the solution in subsequent iterations, hence, 𝓁f  and qf  need not be calculated in any of the 

iterations, except the last.  

The preceding analysis conclusively establishes that when model 1, 2, or 3 is used to 

compute the evaporation variables, 𝓁f  and qf  need to be evaluated only once following 
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convergence. Also, when coupled with empirical evidence (obtained by way of numerical 

outputs presented in Tables 3a and 3b), the preceding observations strongly suggest that the 

mathematical structure of the Penman-Monteith system of equations is such that the iterative 

solution of the complete set, consisting of Eqs. 1 to 4 (model 4), is unlikely to produce a more 

accurate solution than the reduced forms (models 1, 2, and 3).  

 

4.7. Comparison of model 1 and the conventional model    

 

Results of intercomparison of model 1 and the conventional model (i.e., the most widely used 

formulation) is presented here. Given that both model 1 and the conventional model involve a 

level of approximation in the computation of , direct comparison of the models could not 

provide answer to the question: which model is more accurate? A more direct way of addressing 

this question may require comparing both model 1 and the conventional model to a more 

accurate model. However, such an evaluation is not part of the current study, hence the question 

of accuracy was not addressed here, directly, as such. Instead, the purpose of model comparison 

was limited to (i) assessment of the significance of the effects that the different approaches, used 

by the models to estimate ∆, have on variable estimates in general and (ii) highlighting some 

broader implications of the results on the relative accuracy of the models.   

 

4.7.1. Latent heat flux   

 

Table 4 presents the variables estimates obtained with model 1 and the conventional model for 

all the data sets given in Table 1. Note that, for convenience, the data in the outputs section of 

model 1 (Table 4) simply replicates those presented in Tables 3a and 3b. As can be noted from 

Table 4, the latent heat flux computed with model 1 varies between a minimum of 191.3W/m2 
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(data set 4) and a maximum of 683.3W/m2 (data set 7). By comparison estimates of 𝓁f  obtained 

with the conventional method range from 175.1W/m2 (data et 4) to 654.1W/m2 (data set 7). 

Furthermore, evaporation flux obtained with model 1 vary between 6.7mm/day (data set 4) and 

24.1mm/day (data set 7). The conventional approach predicts slightly less evaporation fluxes, Ef, 

than that of model 1, which vary between 6.2mm (data set  4) and 23.1mm/day (data set 7).  

 A close look at the data in Table 4 shows that the minimum and maximum of the 

computed latent heat (or evaporation) flux obtained with both models are observed in data sets 4 

and 7, respectively. The low evaporation flux associated with data set 4 can be explained by the 

fact that data set 4 is characterized by a relatively small external heat flux (300W/m2), low vapor 

pressure deficit (0.373KPa), low air temperature (278K or 5oC), and a relatively large  

aerodynamic resistance of 98.4s/m. On the other hand, the external heat flux for data set 7, which 

is 400W/m2, is about 85% of the average across all data sets and the measured air temperature of 

293K is not on the high side. Thus, the likely explanatory factor for the very large latent heat and 

evaporation fluxes are the very high vapor pressure deficit (of 2.1KPa) and to a degree the small 

aerodynamic resistance of 28.2s/m. This suggests that in data set 7, the evaporation process was 

likely dominated by the adiabatic cooling process.  

Upon closer examination, the latent heat flux for data set 7 show that the gain in latent 

heat, in the adiabatic cooling process, expressed in terms of equivalent latent heat flux is 

443.9W/m2. By comparison, the fraction of the external heat flux, that led to further increases in 

latent heat content of the air in the diabatic process is 239.4W/m2, which is about 53.9% of that 

associated with the adiabatic component. This observation confirms that the evaporation process 

in data set 7 was dominated by the adiabatic cooling component, driven mainly by the high vapor 

pressure deficit and to a degree by the low aerodynamic resistance. 
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Table 4. Comparison of variables estimates computed with model 1 and the conventional model 

 (*)  Modified psychrometer constant is not given for the McArthur data sets, because it is equal to the psychrometer constant, which was specified at the input  

     (Table 1). The aerodynamic resistance as well is not given at output for McArthur’s data sets, because it was specified at the input  
(**) Min, Max, Av are the minimum, maximum, and average percent absolute residuals, respectively.  
(***) For each variable and data set combination, percent absolute residuals were calculated with:  

 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  
|𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 1 −  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑜𝑑𝑒𝑙| 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 1 
100 

  

Variable  name Unit 

Model outputs 

Model 1 Conventional model 

McArthur’s data sets Additional data sets  McArthur’s data sets Additional data sets  

Data 

set 1 

Data 

set 2 

Data 

set 3 

Data 

set 4 

Data 

set 5 

Data 

set 6 

Data 

 set 7 

Data 

set 1 
Data 

set 2 
Data 

set 3 
Data 

set 4 
Data 

set 5 
Data 

set 6 
Data 

set 7 
Latent heat flux, ℓf W/m2 277.1 373.0 435.6 191.3 339.8 520.5 683.3 201.4 343.7 428.4 175.1 320.2 509.5 654.1 
Sensible heat flux, qf 

(*) W/m2 222.9 127.0 64.4 108.7 80.2 129.5 -283.3 298.6 156.3 71.6 124.9 99.8 140.5 -254.1 
Evaporation flux, Ef (*) mm/day 9.8 13.1 15.4 6.7 12.0 18.3 24.1 7.1 12.1 15.1 6.2 11.3 18.0 23.1 
Final air temperature, Ta K 291.4 303.5 318.3 286.8 314.5 312.5 286.4 297.7 305.9 318.9 288.2 317.3 312.9 287.1 
Saturation vapor 

pressure related  

slope parameter, ∆ 
KPa/K 0.0821 0.1938 0.4465 0.0805 0.3265 0.3478 0.1217 0.0445 0.1452 0.3946 0.0610 0.2442 0.3119 0.1452 

Modified psychrometer 

constant, * (*) 
KPa/K - - - 0.0697 0.0925 0.1107 0.0816 - - - 0.0697 0.0925 0.1107 0.0816 

Aerodynamic 

resistance, ra (*) 
s/m - - - 98.4 173.1 42.2 28.2 - - - 98.4 173.1 42.2 28.2 

Variable name Unit - 

Summary of residuals between variable estimates obtained with 

model 1 and the conventional model (%) (***) 

Min Max Av 

Latent heat flux, ℓf W/m2 - 1.66 27.32 8.21 

Sensible heat flux, qf 
(*) W/m2 - 8.53 33.98 18.06 

Evaporation flux, Ef (*) mm/day - 1.67 27.33 8.21 
Final air temperature, Ta K - 0.12 2.15 0.69 
Saturation vapor 

pressure related  

slope parameter, ∆ 
KPa/K - 10.32 45.77 23.07 
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4.7.2. Sensible heat flux 

 

The sensible heat flux computed with model 1 varies between a minimum of -283.3W/m2 (data 

set 7) and a maximum of 222.9W/m2 (data set 1). On the other hand, qf obtained with the 

conventional model ranges from -254.1W/m2 (data set 7) to 298.6W/m2 (data set 1), Table 4. The 

maximum residual between estimates of the sensible heat flux, obtained with model 1 and the 

conventional model, can be appreciable and will be discussed later. However, the point of 

interest here is physical interpretation of the results, which is presented as follows.  

The negative algebraic sign of the minimum sensible heat flux in data set 7 indicates that 

there was a net decline in the sensible heat content of the air during the evaporation process. 

However, whether the decrement in the sensible heat content of the air represents not only a net 

reduction (associated with the adiabatic cooling process that is not fully compensated in the 

diabatic process), but also a net outflow of heat from the air to the exchange surface, depends on 

the algebraic sign of the diabatic component of the sensible heat flux. 

A close look at the sensible heat flux estimate for data set 7, computed with model 1, 

reveals that the equivalent sensible heat flux in the adiabatic cooling process is -443.9W/m2.  

While the negative algebraic sign implies a loss in the sensible heat content of the air in the 

adiabatic process (at a rate of 443.9W/m2), it can, nonetheless, be deduced based the analysis in 

Chapter 2 that the loss was not because of a transfer of heat from the air to the exchange surface. 

Instead, it was due to the conversion of sensible heat to an equivalent amount of latent heat, as a 

result of which the total heat content of the air remained constant.  

In the diabatic process, on the other hand, the sensible heat fraction (of the external heat 

flux) is 160.6W/m2. The positive algebraic sign of the sensible heat flux associated with the 

diabatic component shows that it represents a transfer of heat from the exchange surface to the 
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air and hence an increase in the sensible heat content of the air. Note that this observation could 

have also been deduced from the algebraic sign of the external heat flux for data set 7, which is 

400W/m2, and alternatively from the algebraic sign of the latent heat flux associated with the 

diabatic process, which is 239.4W/m2.  

The preceding shows that the negative algebraic sign of the net sensible heat flux for the 

entire evaporation process (-283.3W/m2, Table 4), which is equal to the algebraic sum of the 

adiabatic and diabatic components of the sensible heat flux, is not caused by a net transfer of heat 

from the air to the exchange surface. Instead, it is attributable to the imbalance between the 

decrement in the sensible heat content of the air that occurred (at a steady rate of -443.9 W/m2) 

in the adiabatic process, through conversion to latent heat, and the increment that occurred in the 

diabatic process (at a rate of 160.6W/m2), which led to a net overall negative sensible heat flux. 

Notably, the preceding discussion shows that the thermodynamic conceptualization of 

evaporation does not just allow for the quantification of the latent heat and sensible heat fluxes, 

but also reveals more readily the physical processes that derive changes in the heat contents of 

the air and the modes of interaction of the ambient air with the source/sink surface during an 

evaporation process. 

 

4.7.3. Final (equilibrium) air temperature and slope parameter related to the saturation  

           vapor pressure function 

 

As can be noted from Table 4, estimates of the final air temperature obtained with model 1 vary 

between a minimum of 286.4K (data set 7) and a maximum of  318.3K (data set 3). The surface 

temperature (which is equivalent to the final air temperature in model 1) calculated with the 

conventional model ranges between 287.1 (data set 7) and 318.9K (data set 3). Furthermore, 

estimates of ∆ obtained with model 1 ranges from 0.0805 (data set 4) to 0.4465KPa/K (data set 
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3). By comparison, the ∆ value calculated with the conventional model vary between 0.0445 

(data set 1) and 0.3946 KPa/K (data set 3).  

 

4.7.4. Percent absolute residuals between variable estimates obtained with model 1 and the   

          conventional model 

 

A summary of the overall percent absolute residuals between the variable estimates obtained 

with model 1 and those of the conventional model is presented in the residuals section of  

Table 4. In addition, however, the minimum, maximum, and average percent absolute residuals 

between variable estimates computed with model 1 and those obtained with the conventional 

model are depicted in a grouped bar chart (Figure 3). As can be noted from Figure 3 and Table 4, 

with a maximum percent absolute residual of about 45.8% and a mean residual of 23.1%, the 

largest residual between the variables  computed with the conventional model and model 1 is 

associated with estimates of ∆.  

By comparison, the smallest percent absolute residual is observed for the final air 

temperature, with a maximum value of about 2.2% and a mean of 0.7%. The results also show 

that the variable most affected by the difference in the approaches used to estimate ∆, in the 

models, is the sensible heat flux, which has a maximum residual of about 34.0% and an average 

value of 18.1%. Although the rather more important parameters of latent heat flux and 

evaporation flux have a relatively large maximum residual of about 27.3%, the average residual 

for both parameters is a much smaller amount of 8.2% (Table 4). These results suggest that 

differences in the methods used for estimating ∆ have the maximum effect on sensible heat flux 

estimates, a negligible effect on estimates of Ta, and a limited effect on the estimates of latent 

heat and evaporation fluxes. 
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Figure 3. Absolute residuals between variable estimates computed with model 1 and  the  

                conventional model (All data sets, Table 1) 

 

It is important to note here that both model 1 and the conventional model are based on 

simplifying assumptions and hence outputs of both models involve a level of approximation. The 

implication is that the accuracy of the conventional model and model 1 cannot be evaluated 

through direct intercomparison of the models. Such an assessment, instead, requires the variable 

estimates obtained with each model (i.e., the conventional model and model 1) to be compared 

with those of a more accurate model (likely a mechanistic simulation model) of evaporation from 

a cropped field, that couples vapor, heat, and momentum transfer and transport processes through 

the soil-crop-atmosphere continuum, taking into account wind induced advection and forced 

convection. Thus, evaluation of the accuracy of the proposed model (model 1) relative to that of 

the conventional approach is not the objective of the study reported here. However, considering 
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evaporation flux (i.e., the single most important variable in so far as agricultural water 

management is concerned), the relatively large maximum percent absolute residual of 27.3% 

suggests that potentially there can be significant differences between the evaporation flux 

estimates of the two methods.  

Generally, the average residual, instead of the maximum, is more representative of the 

difference between variable estimates computed with model 1 and the conventional model. Thus, 

the relatively small mean absolute residual (of 8.2%) for ℓf  suggests that differences in ℓf 

estimates computed with model 1 and the conventional model should typically be within the 

margin of error of the conventional model. This result points to the fact that, from the standpoint 

of accuracy, both models may, on average, represent equally adequate description of natural 

evaporation 

 

Chapter 5.  Summary and conclusion  

 

In this report, the Penman-Monteith equation is derived based on the thermodynamic 

conceptualization of evaporation proposed by Monteith. It is shown that the derivation leads to a 

set of equations (consisting of expressions for latent heat flux, sensible heat flux, and the final air 

temperature) that represent a coupled system. The report detailed the development and 

evaluation of alternative numerical solutions to the coupled set of equations. Furthermore, 

relationships between resistance parameters used to define the Penman-Monteith system of 

equations are explored and equations used to evaluate them are reviewed.  

 

A review of Monteith’s thermodynamic approach to the derivation of the Penman-Monteith 

equation is presented in Chapter 2. While essentially reviewing the work of Monteith, the study 
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presented here emphasizes basic assumptions that the derivation is based on, clarifies concepts, 

and fills gaps left in the original discussion. In addition, it focusses on mathematical/physical 

interpretations of the terms and key parameters of the equation.  

Unlike the conventional approach to the derivation of the Penman-Monteith equation, 

where evaporation is treated as vapor and heat transfer process between two points in space (i.e., 

a point in the exchange surface and another one in the air current), the thermodynamic 

conceptualization of evaporation introduces a perspective whereby evaporation is viewed from 

the vantage point of the changes it produces in the thermodynamic properties of the air. 

Accordingly, the derivation of the Penman-Monteith equation presented here describes 

evaporation as a physical process consisting of a pair of formal thermodynamic subprocesses 

(comprising, adiabatic cooling and diabatic heating) that leads to an increase/a decrease in the 

energy states of the ambient air in a way that is readily quantifiable.  

The Penman-Monteith equation is derived in two steps. As an initial approximation, a 

form of the equation that models evaporation from a wet surface into a stationary ambient air is 

developed based on the thermodynamic equations of state applied to a suitably defined system. 

Resistance parameters are then introduced into the basic equations, in a subsequent step, 

accounting for the dynamic effects of wind-surface interaction [and the (bulk) canopy system 

response to atmospheric conditions] on evaporation, leading to the Penman-Monteith equation.  

Although less compact than the conventional approach, the thermodynamic approach to 

the derivation of the Penman-Monteith equation has the benefit of revealing key assumptions and 

concepts that are generally implicit in the conventional approach. Important observations 

stemming from the thermodynamic based derivation of the Penman-Monteith equation are 

summarized here:  
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(1) The method accentuates the notion that the Penman–Monteith equation is fundamentally a 

description of the process of vapor and heat transfer between a wet source/sink surface and a 

quiescent ambient air (the first step of the derivation with the thermodynamic approach). 

 

(2) It also underlines the fact that the effects, of crop-canopy complex response to atmospheric 

conditions and convective transport, on heat and vapor transfer are taken into account in an 

approximate sense through the introduction of resistance parameters to the basic equations of 

state (the second step of the derivation with the thermodynamic approach).  

 

(3) The thermodynamic approach also shows that evaporation is a process essentially driven by 

energy (heat) supply and as such, each term of the Penman–Monteith equation represents a 

separate heat source for evaporation, consisting of an external heat flux from the surface for the 

diabatic process and sensible heat extant in the air at the start of evaporation for the adiabatic 

process.  

 

(4) Given that the thermodynamic approach is based on conceptual charts depicting the energy 

states of a suitably defined thermodynamic system, it readily reveals the mathematical attributes 

of a key parameter of the Penman–Monteith equation, namely the slope parameter related to the 

saturation vapor pressure curve, Δ.  

 

(5) Notably, a close look at the charts shows that evaporation can occur with a surface 

temperature that is less than the air temperature, provided the surface temperature is greater than 

the dewpoint temperature. and  
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(6) The results also suggest that the thermodynamic description of the terms of the Penman–

Monteith equation as adiabatic and diabatic components might be a more precise interpretation 

of the physical meaning of the terms. 

 

The derivation presented in Chapter 2 produces equations for computing the latent heat flux, 

sensible heat flux, and the final air temperature under conditions of natural evaporation. The 

equations are expressed as functions of the bulk surface resistance and the resistances to vapor 

and heat transport across the turbulent boundary layer. Under a suitably defined atmospheric 

condition, the aerodynamic resistance to vapor transfer is shown to be the same as that of heat 

transfer, leading to a simplification of the modified psychrometer constant and hence to the 

common form of the Penman-Monteith equations.  

Another important physical process integral to evaporation and inextricably coupled to 

the convective transport of vapor and heat is that of momentum transfer. Chapter 3 derives an 

equation for the aerodynamic resistance to momentum transfer and presents a relationship 

between the resistance parameters to the convective transfer of momentum and that of 

vapor/heat. The chapter then closes with a description of the equation widely used to estimate the 

aerodynamic resistance to vapor/heat transfer and a reference to a method used for estimating the 

bulk surface resistance in agricultural water management applications.  

  

The system of equations derived in Chapter 2 constitutes a coupled set. Description of numerical 

solutions for the Penman-Monteith system of equations is presented in Chapter 4. Alternative 

numerical solutions ranging in complexity from those involving the solution of a subset of the 

system of equations to one solving a form of the complete set are developed and evaluated here. 
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Accordingly, four alternative algorithms, referred to as model 1, 2, 3, and 4, are presented. 

Models 1, 2, and 3 use a two-step approach to determine the variables: 𝓁f , qf, Ta. Model 4, on the 

other hand, computes latent heat, 𝓁f, sensible heat, qf, and final air temperature, Ta, through a 

simultaneous iterative solution of the complete set. 

 Results of model verification showed that each of the alternative models produced 

outputs essentially identical and also in close agreement with a reference solution. The average 

absolute residuals between the predictions of the models presented here and those of the 

reference solution vary between about 0.2% observed for Ta and a maximum of 1.9% for ∆. In 

addition, comparison of the alternative models based on the criteria of numerical efficiency and 

robustness suggests that each model represents a comparable alternative, to any of the other 

models, for estimating evaporation. However, owing to its simplicity, model 1 is considered for 

further analysis.  

The models developed in the current study compute ∆ as part of the solution. A more 

widely used approach described here as the conventional model, on the other hand, determines ∆ 

independently (by setting it equal to the slope of the saturation vapor pressure curve at the 

measured air temperature), leading to an uncoupled system of equations that can be solved 

directly.  

A comparison of the outputs of the conventional model with those of model 1 was 

conducted, in the current study, based on a total of seven hypothetical data sets, covering a wide 

range of natural evaporation conditions. The results suggest that differences in the methods used 

for estimating ∆ have the maximum effect on sensible heat flux estimates (where the mean 

absolute residual is 18.1%), a negligible effect on estimates of final air temperature (with an 
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average residual of 0.7%), and a limited effect on the estimates of latent heat and evaporation 

fluxes, in which the mean residual is 8.2%.  

Both model 1 and the conventional model involve a level of approximation in the 

determination of ∆, thus, a direct comparison of the two models cannot provided answer to the 

question: which model is more accurate? In other words, the current study does not address the 

question of accuracy. However, the fact that the average residual for ℓf, over all the data sets is 

only 8.2%, suggests that differences in ℓf  estimates computed with model 1 and the conventional 

model, should typically be within the margin of error of the conventional model (the more 

widely used of the two models compared here). This observation suggests that from agricultural 

water management perspective, both the conventional model and model 1 can, on the average, be 

considered equally valid descriptions of natural evaporation.  

A cautionary note is, nonetheless, in order here. Although the data used in the analysis 

cover a range of evaporation scenarios, they are limited and hence a conclusive deduction on this 

may need to await a more comprehensive follow up study focused on a comparative evaluation 

of  model 1 and the conventional model. 
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